Please provide the following information when requesting support.
• Hardware (T4/V100/Xavier/Nano/etc): Nvidia 3090
• Network Type (Detectnet_v2/Faster_rcnn/Yolo_v4/LPRnet/Mask_rcnn/Classification/etc): Detectnet_v2
• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here):
Configuration of the TAO Toolkit Instance
task_group:
model:
dockers:
nvidia/tao/tao-toolkit:
5.0.0-tf2.11.0:
docker_registry: nvcr.io
tasks:
1. classification_tf2
2. efficientdet_tf2
5.0.0-tf1.15.5:
docker_registry: nvcr.io
tasks:
1. bpnet
2. classification_tf1
3. converter
4. detectnet_v2
5. dssd
6. efficientdet_tf1
7. faster_rcnn
8. fpenet
9. lprnet
10. mask_rcnn
11. multitask_classification
12. retinanet
13. ssd
14. unet
15. yolo_v3
16. yolo_v4
17. yolo_v4_tiny
5.2.0-pyt2.1.0:
docker_registry: nvcr.io
tasks:
1. action_recognition
2. centerpose
3. deformable_detr
4. dino
5. mal
6. ml_recog
7. ocdnet
8. ocrnet
9. optical_inspection
10. pointpillars
11. pose_classification
12. re_identification
13. visual_changenet
5.2.0-pyt1.14.0:
docker_registry: nvcr.io
tasks:
1. classification_pyt
2. segformer
dataset:
dockers:
nvidia/tao/tao-toolkit:
5.2.0-data-services:
docker_registry: nvcr.io
tasks:
1. augmentation
2. auto_label
3. annotations
4. analytics
deploy:
dockers:
nvidia/tao/tao-toolkit:
5.2.0-deploy:
docker_registry: nvcr.io
tasks:
1. visual_changenet
2. centerpose
3. classification_pyt
4. classification_tf1
5. classification_tf2
6. deformable_detr
7. detectnet_v2
8. dino
9. dssd
10. efficientdet_tf1
11. efficientdet_tf2
12. faster_rcnn
13. lprnet
14. mask_rcnn
15. ml_recog
16. multitask_classification
17. ocdnet
18. ocrnet
19. optical_inspection
20. retinanet
21. segformer
22. ssd
23. trtexec
24. unet
25. yolo_v3
26. yolo_v4
27. yolo_v4_tiny
format_version: 3.0
toolkit_version: 5.2.0
published_date: 12/06/2023
• Training spec file(If have, please share here)
• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.):
I am experiencing this issue for every model that uses converter so cannot specify it.
If I am right, since tlt 5.0.0, tlt/etlt are deprecated and the toolkit makes models with hdf5 also exports models to onnx format.
But tao-converter requires encrypted model such as etlt format I guess since I am getting this error “[ERROR] Failed to parse the model, please check the encoding key to make sure it’s correct”.
I have tried to use explicit key and trained model several times just in case I used wrong key and none of them worked. While when I used pruned etlt format model from ngc example, everything worked fine. So format is the only issue in my opinion.
Am I experiencing it because I am using too old examples? Should I use trtexec to convert my onnx model instead of using tao-converter?