Description
I am using polygraphy to convert my onnx model to tensorrt. However it fails because it complains that -[E] In node 95 (notInvalidType): UNSUPPORTED_NODE: Found invalid input type of INT32
this is an input to a matmul layer in the model
Environment
TensorRT Version: 8.5.3.1
GPU Type: T4
Nvidia Driver Version: 510
CUDA Version: 11.6
CUDNN Version: 8.0
Operating System + Version: ubuntu 18.04
Python Version (if applicable): 3.9
TensorFlow Version (if applicable): 2.7
PyTorch Version (if applicable):
Baremetal or Container (if container which image + tag):
Relevant Files
recognizer.onnx (33.6 MB)
Steps To Reproduce
run in terminal
polygraphy convert recognizer.onnx --save-tactics replay.json --save-tactics replay.json -o 0.engine
Error trace:
[W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage. See `CUDA_MODULE_LOADING` in https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars
[W] onnx2trt_utils.cpp:377: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
[W] onnx2trt_utils.cpp:403: One or more weights outside the range of INT32 was clamped
[E] ModelImporter.cpp:726: While parsing node number 95 [MatMul -> "model_2/lambda_1/MatMul_1:0"]:
[E] ModelImporter.cpp:727: --- Begin node ---
[E] ModelImporter.cpp:728: input: "model_2/lambda_1/Reshape_8:0"
input: "model_2/lambda_1/ones:0"
output: "model_2/lambda_1/MatMul_1:0"
name: "model_2/lambda_1/MatMul_1"
op_type: "MatMul"
[E] ModelImporter.cpp:729: --- End node ---
[E] ModelImporter.cpp:732: ERROR: onnx2trt_utils.cpp:23 In function notInvalidType:
[8] Found invalid input type of INT32
[E] In node 95 (notInvalidType): UNSUPPORTED_NODE: Found invalid input type of INT32
[!] Could not parse ONNX correctly