I think there is no difference between them. When I put the video into the deepstream-lpr-app test, LPDnet cannot locate the license plate position correctly, but the result is correct when I use LPDnet to infer the screenshot of the vehicle. I think there is still an issue in lpd_ccpd_config. My configuration file is as follows. Any ideas?

################################################################################
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
################################################################################
# Following properties are mandatory when engine files are not specified:
# int8-calib-file(Only in INT8)
# Caffemodel mandatory properties: model-file, proto-file, output-blob-names
# UFF: uff-file, input-dims, uff-input-blob-name, output-blob-names
# ONNX: onnx-file
#
# Mandatory properties for detectors:
# num-detected-classes
#
# Mandatory properties for classifiers:
# classifier-threshold, is-classifier
#
# Optional properties for classifiers:
# classifier-async-mode(Secondary mode only, Default=false)
#
# Following properties are always recommended:
# batch-size(Default=1)
#
# Other optional properties:
# net-scale-factor(Default=1), network-mode(Default=0 i.e FP32),
# mean-file, gie-unique-id(Default=0), offsets, gie-mode (Default=1 i.e. primary),
# custom-lib-path, network-mode(Default=0 i.e FP32)
#
# The values in the config file are overridden by values set through GObject
# properties.
[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
model-color-format=1
labelfile-path=../models/LP/LPD/ccpd_label.txt
tlt-encoded-model=../models/LP/LPD/ccpd_pruned.etlt
tlt-model-key=nvidia_tlt
model-engine-file=../models/LP/LPD/ccpd_pruned.etlt_b16_gpu0_int8.engine
int8-calib-file=../models/LP/LPD/ccpd_cal.bin
uff-input-dims=3;1168;720;0
uff-input-blob-name=input_1
batch-size=16
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=1
num-detected-classes=1
##1 Primary 2 Secondary
process-mode=2
interval=0
gie-unique-id=2
#0 detector 1 classifier 2 segmentatio 3 instance segmentation
network-type=0
operate-on-gie-id=1
operate-on-class-ids=0
#no cluster
cluster-mode=3
output-blob-names=output_cov/Sigmoid;output_bbox/BiasAdd
input-object-min-height=73
input-object-min-width=45
#GPU:1 VIC:2(Jetson only)
#scaling-compute-hw=2
#enable-dla=1
[class-attrs-all]
pre-cluster-threshold=0.3
roi-top-offset=0
roi-bottom-offset=0
detected-min-w=0
detected-min-h=0
detected-max-w=0
detected-max-h=0