Please provide the following information when requesting support.
• Hardware: Ubantu
• Network Type : Detectnet_v2
Tao: 4
I have trained resnet_18 with 1280x1280 images using tao detectnet_v2. After training the tlt is generated and tested the the tlt. The detection accuracy is quite good, more than 95%.
But once after exporting the model to etlt, I have tested using same set of images. But now the accuracy is is too bad. The etlt can not almost detect anything. Can you advise why there is such a difference in performance between tlt and etlt.
How exported to etlt:
tao detectnet_v2 calibration_tensorfile -e /home/azure_devops/nvidia/tlt-experiments/badge_model/train_fsd3/train_config_badgep.txt -m 15 -o /home/azure_devops/nvidia/tlt-experiments/badge_model/train_fsd3/cal_tensor/calibration.tensor --use_validation_set
tao detectnet_v2 export -m /home/azure_devops/nvidia/tlt-experiments/badge_model/train_fsd3/newmodel/model.tlt -k badge -o /home/azure_devops/nvidia/tlt-experiments/badge_model/train_fsd3/engine_cal/model_badge_step_v21.etlt --cal_image_dir /nfsdata/badge/kitti/data/ --cal_data_file /home/azure_devops/nvidia/tlt-experiments/badge_model/train_fsd3/cal_tensor/calibration.tensor --data_type int8 --batches 15 --batch_size 16 --cal_cache_file /home/azure_devops/nvidia/tlt-experiments/badge_model/train_fsd3/engine_cal/model_badge_step_v21.bin --engine_file /home/azure_devops/nvidia/tlt-experiments/badge_model/train_fsd3/engine_cal/model_badge_step_v21.etlt_b16_gpu0_int8.engine