"Video-stream stopped!"

We are using a darknet for object detection. We have been trying to apply the weight file that we have trained in YOLOv3 to the camera for a while now.
However, when I try to run the darknet demo, I get the following error.

" Video-stream stopped!"

Our development environment is Linux, and we are trying to run the following code.

cd ~/darknet

$./darknet detector demo datasets.data yolov3-voc.cfg yolov3-voc_4000.weights “gst-launch-1.0 nvarguscamerasrc sensor_mode=0 ! ‘video/x-raw(memory:NVMM),width=3820, height=2464, framerate=21/1, format=NV12’ ! nvvidconv flip-method=0 ! ‘video/x-raw,width=1280, height=760’ ! nvvidconv ! nvegltransform ! nveglglessink -e”

I would like to know if there is any effective way to deal with this.

Hi,

Do you run the command on Nano or a Linux-based desktop?
If Nano is used, would you mind sharing the whole output log with us?

Thanks.

Hello, thanks for the reply.

We use the command on Nano.
The whole output log is following.

CUDA-version: 10020 (10020), cuDNN: 8.2.1, GPU count: 1  
 OpenCV version: 4.1.1
Demo
 0 : compute_capability = 530, cudnn_half = 0, GPU: NVIDIA Tegra X1 
net.optimized_memory = 0 
mini_batch = 1, batch = 8, time_steps = 1, train = 0 
   layer   filters  size/strd(dil)      input                output
   0 Create CUDA-stream - 0 
 Create cudnn-handle 0 
conv     32       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  32 0.299 BF
   1 conv     64       3 x 3/ 2    416 x 416 x  32 ->  208 x 208 x  64 1.595 BF
   2 conv     32       1 x 1/ 1    208 x 208 x  64 ->  208 x 208 x  32 0.177 BF
   3 conv     64       3 x 3/ 1    208 x 208 x  32 ->  208 x 208 x  64 1.595 BF
   4 Shortcut Layer: 1,  wt = 0, wn = 0, outputs: 208 x 208 x  64 0.003 BF
   5 conv    128       3 x 3/ 2    208 x 208 x  64 ->  104 x 104 x 128 1.595 BF
   6 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
   7 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
   8 Shortcut Layer: 5,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
   9 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
  10 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
  11 Shortcut Layer: 8,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
  12 conv    256       3 x 3/ 2    104 x 104 x 128 ->   52 x  52 x 256 1.595 BF
  13 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  14 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  15 Shortcut Layer: 12,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  16 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  17 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  18 Shortcut Layer: 15,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  19 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  20 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  21 Shortcut Layer: 18,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  22 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  23 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  24 Shortcut Layer: 21,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  25 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  26 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  27 Shortcut Layer: 24,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  28 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  29 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  30 Shortcut Layer: 27,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  31 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  32 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  33 Shortcut Layer: 30,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  34 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  35 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  36 Shortcut Layer: 33,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  37 conv    512       3 x 3/ 2     52 x  52 x 256 ->   26 x  26 x 512 1.595 BF
  38 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  39 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  40 Shortcut Layer: 37,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  41 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  42 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  43 Shortcut Layer: 40,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  44 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  45 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  46 Shortcut Layer: 43,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  47 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  48 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  49 Shortcut Layer: 46,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  50 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  51 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  52 Shortcut Layer: 49,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  53 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  54 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  55 Shortcut Layer: 52,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  56 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  57 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  58 Shortcut Layer: 55,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  59 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  60 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  61 Shortcut Layer: 58,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  62 conv   1024       3 x 3/ 2     26 x  26 x 512 ->   13 x  13 x1024 1.595 BF
  63 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  64 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  65 Shortcut Layer: 62,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  66 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  67 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  68 Shortcut Layer: 65,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  69 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  70 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  71 Shortcut Layer: 68,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  72 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  73 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  74 Shortcut Layer: 71,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  75 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  76 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  77 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  78 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  79 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  80 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  81 conv     18       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x  18 0.006 BF
  82 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  83 route  79 		                           ->   13 x  13 x 512 
  84 conv    256       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 256 0.044 BF
  85 upsample                 2x    13 x  13 x 256 ->   26 x  26 x 256
  86 route  85 61 	                           ->   26 x  26 x 768 
  87 conv    256       1 x 1/ 1     26 x  26 x 768 ->   26 x  26 x 256 0.266 BF
  88 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  89 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  90 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  91 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  92 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  93 conv     18       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x  18 0.012 BF
  94 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  95 route  91 		                           ->   26 x  26 x 256 
  96 conv    128       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 128 0.044 BF
  97 upsample                 2x    26 x  26 x 128 ->   52 x  52 x 128
  98 route  97 36 	                           ->   52 x  52 x 384 
  99 conv    128       1 x 1/ 1     52 x  52 x 384 ->   52 x  52 x 128 0.266 BF
 100 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
 101 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
 102 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
 103 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
 104 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
 105 conv     18       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x  18 0.025 BF
 106 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 65.304 
avg_outputs = 516723 
 Allocate additional workspace_size = 52.44 MB 
Loading weights from yolov3-voc_4000.weights...
 seen 64, trained: 32 K-images (0 Kilo-batches_64) 
Done! Loaded 107 layers from weights-file 
video file: gst-launch-1.0 nvarguscamerasrc sensor_mode=0 ! 'video/x-raw(memory:NVMM),width=3820, height=2464, framerate=21/1, format=NV12' ! nvvidconv flip-method=0 ! 'video/x-raw,width=1280, height=760' ! nvvidconv ! nvegltransform ! nveglglessink -e

(darknet:18757): GStreamer-CRITICAL **: 16:37:44.227: gst_element_make_from_uri: assertion 'gst_uri_is_valid (uri)' failed

(darknet:18757): GStreamer-CRITICAL **: 16:37:44.229: gst_element_make_from_uri: assertion 'gst_uri_is_valid (uri)' failed
[ WARN:0] global /home/nvidia/host/build_opencv/nv_opencv/modules/videoio/src/cap_gstreamer.cpp (711) open OpenCV | GStreamer warning: Error opening bin: unexpected reference "gst-launch-1" - ignoring
[ WARN:0] global /home/nvidia/host/build_opencv/nv_opencv/modules/videoio/src/cap_gstreamer.cpp (480) isPipelinePlaying OpenCV | GStreamer warning: GStreamer: pipeline have not been created
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 

Hi,

gst-launch-1.0 should not be the part of the pipeline string.
Could you try if the following command works?

$./darknet detector demo datasets.data yolov3-voc.cfg yolov3-voc_4000.weights “nvarguscamerasrc sensor_mode=0 ! ‘video/x-raw(memory:NVMM),width=3820, height=2464, framerate=21/1, format=NV12’ ! nvvidconv flip-method=0 ! ‘video/x-raw,width=1280, height=760’ ! nvvidconv ! nvegltransform ! nveglglessink -e”

Thanks.

Hi!

I tried to run the code you suggested, using “coco.data” file because "datasets.data"file did not open.
However, I got the error again.

How can I solve this problem?

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3-tiny.weights "nvarguscamerasrc sensor_mode=0 ! 'video/x-raw(memory:NVMM),width=3820, height=2464, framerate=21/1, format=NV12' ! nvvidconv flip-method=0 ! 'video/x-raw,width=1280, height=760' ! nvvidconv ! nvegltransform ! nveglglessink -e"
 CUDA-version: 10020 (10020), cuDNN: 8.2.1, GPU count: 1  
 OpenCV version: 4.1.1
Demo
 0 : compute_capability = 530, cudnn_half = 0, GPU: NVIDIA Tegra X1 
net.optimized_memory = 0 
mini_batch = 1, batch = 1, time_steps = 1, train = 0 
   layer   filters  size/strd(dil)      input                output
   0 Create CUDA-stream - 0 
 Create cudnn-handle 0 
conv     32       3 x 3/ 1    416 x 416 x   3 ->  416 x 416 x  32 0.299 BF
   1 conv     64       3 x 3/ 2    416 x 416 x  32 ->  208 x 208 x  64 1.595 BF
   2 conv     32       1 x 1/ 1    208 x 208 x  64 ->  208 x 208 x  32 0.177 BF
   3 conv     64       3 x 3/ 1    208 x 208 x  32 ->  208 x 208 x  64 1.595 BF
   4 Shortcut Layer: 1,  wt = 0, wn = 0, outputs: 208 x 208 x  64 0.003 BF
   5 conv    128       3 x 3/ 2    208 x 208 x  64 ->  104 x 104 x 128 1.595 BF
   6 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
   7 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
   8 Shortcut Layer: 5,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
   9 conv     64       1 x 1/ 1    104 x 104 x 128 ->  104 x 104 x  64 0.177 BF
  10 conv    128       3 x 3/ 1    104 x 104 x  64 ->  104 x 104 x 128 1.595 BF
  11 Shortcut Layer: 8,  wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF
  12 conv    256       3 x 3/ 2    104 x 104 x 128 ->   52 x  52 x 256 1.595 BF
  13 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  14 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  15 Shortcut Layer: 12,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  16 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  17 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  18 Shortcut Layer: 15,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  19 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  20 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  21 Shortcut Layer: 18,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  22 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  23 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  24 Shortcut Layer: 21,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  25 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  26 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  27 Shortcut Layer: 24,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  28 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  29 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  30 Shortcut Layer: 27,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  31 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  32 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  33 Shortcut Layer: 30,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  34 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
  35 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
  36 Shortcut Layer: 33,  wt = 0, wn = 0, outputs:  52 x  52 x 256 0.001 BF
  37 conv    512       3 x 3/ 2     52 x  52 x 256 ->   26 x  26 x 512 1.595 BF
  38 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  39 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  40 Shortcut Layer: 37,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  41 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  42 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  43 Shortcut Layer: 40,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  44 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  45 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  46 Shortcut Layer: 43,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  47 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  48 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  49 Shortcut Layer: 46,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  50 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  51 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  52 Shortcut Layer: 49,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  53 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  54 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  55 Shortcut Layer: 52,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  56 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  57 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  58 Shortcut Layer: 55,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  59 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  60 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  61 Shortcut Layer: 58,  wt = 0, wn = 0, outputs:  26 x  26 x 512 0.000 BF
  62 conv   1024       3 x 3/ 2     26 x  26 x 512 ->   13 x  13 x1024 1.595 BF
  63 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  64 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  65 Shortcut Layer: 62,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  66 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  67 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  68 Shortcut Layer: 65,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  69 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  70 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  71 Shortcut Layer: 68,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  72 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  73 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  74 Shortcut Layer: 71,  wt = 0, wn = 0, outputs:  13 x  13 x1024 0.000 BF
  75 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  76 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  77 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  78 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  79 conv    512       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 512 0.177 BF
  80 conv   1024       3 x 3/ 1     13 x  13 x 512 ->   13 x  13 x1024 1.595 BF
  81 conv    255       1 x 1/ 1     13 x  13 x1024 ->   13 x  13 x 255 0.088 BF
  82 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  83 route  79 		                           ->   13 x  13 x 512 
  84 conv    256       1 x 1/ 1     13 x  13 x 512 ->   13 x  13 x 256 0.044 BF
  85 upsample                 2x    13 x  13 x 256 ->   26 x  26 x 256
  86 route  85 61 	                           ->   26 x  26 x 768 
  87 conv    256       1 x 1/ 1     26 x  26 x 768 ->   26 x  26 x 256 0.266 BF
  88 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  89 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  90 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  91 conv    256       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 256 0.177 BF
  92 conv    512       3 x 3/ 1     26 x  26 x 256 ->   26 x  26 x 512 1.595 BF
  93 conv    255       1 x 1/ 1     26 x  26 x 512 ->   26 x  26 x 255 0.177 BF
  94 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
  95 route  91 		                           ->   26 x  26 x 256 
  96 conv    128       1 x 1/ 1     26 x  26 x 256 ->   26 x  26 x 128 0.044 BF
  97 upsample                 2x    26 x  26 x 128 ->   52 x  52 x 128
  98 route  97 36 	                           ->   52 x  52 x 384 
  99 conv    128       1 x 1/ 1     52 x  52 x 384 ->   52 x  52 x 128 0.266 BF
 100 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
 101 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
 102 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
 103 conv    128       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 128 0.177 BF
 104 conv    256       3 x 3/ 1     52 x  52 x 128 ->   52 x  52 x 256 1.595 BF
 105 conv    255       1 x 1/ 1     52 x  52 x 256 ->   52 x  52 x 255 0.353 BF
 106 yolo
[yolo] params: iou loss: mse (2), iou_norm: 0.75, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.00
Total BFLOPS 65.879 
avg_outputs = 532444 
 Allocate additional workspace_size = 52.44 MB 
Loading weights from yolov3-tiny.weights...
 seen 64, trained: 32013 K-images (500 Kilo-batches_64) 
Done! Loaded 48 layers from weights-file 
video file: nvarguscamerasrc sensor_mode=0 ! 'video/x-raw(memory:NVMM),width=3820, height=2464, framerate=21/1, format=NV12' ! nvvidconv flip-method=0 ! 'video/x-raw,width=1280, height=760' ! nvvidconv ! nvegltransform ! nveglglessink -e

(darknet:17691): GStreamer-CRITICAL **: 15:30:24.455: gst_element_make_from_uri: assertion 'gst_uri_is_valid (uri)' failed

(darknet:17691): GStreamer-CRITICAL **: 15:30:24.503: gst_element_make_from_uri: assertion 'gst_uri_is_valid (uri)' failed
[ WARN:0] global /home/nvidia/host/build_opencv/nv_opencv/modules/videoio/src/cap_gstreamer.cpp (711) open OpenCV | GStreamer warning: Error opening bin: syntax error
[ WARN:0] global /home/nvidia/host/build_opencv/nv_opencv/modules/videoio/src/cap_gstreamer.cpp (480) isPipelinePlaying OpenCV | GStreamer warning: GStreamer: pipeline have not been created
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 
 Video-stream stopped! 

I tried various things.
I have checked the connected device by entering the following command.

$ gst-device-monitor-1.0

Probing devices...


Device found:

	name  : Monitor of Built-in Audio Digital Stereo (HDMI)
	class : Audio/Source
	caps  : audio/x-raw, format=(string){ S16LE, S16BE, F32LE, F32BE, S32LE, S32BE, S24LE, S24BE, S24_32LE, S24_32BE, U8 }, layout=(string)interleaved, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-alaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-mulaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	properties:
		device.description = "Monitor\ of\ Built-in\ Audio\ Digital\ Stereo\ \(HDMI\)"
		device.class = monitor
		alsa.card = 0
		alsa.card_name = tegra-hda
		alsa.long_card_name = "tegra-hda\ at\ 0x70038000\ irq\ 83"
		device.bus_path = platform-70030000.hda
		sysfs.path = /devices/70030000.hda/sound/card0
		device.form_factor = internal
		device.string = 0
		module-udev-detect.discovered = 1
		device.icon_name = audio-card
	gst-launch-1.0 pulsesrc device=alsa_output.platform-70030000.hda.hdmi-stereo.monitor ! ...


Device found:

	name  : Monitor of Built-in Audio Analog Stereo
	class : Audio/Source
	caps  : audio/x-raw, format=(string){ S16LE, S16BE, F32LE, F32BE, S32LE, S32BE, S24LE, S24BE, S24_32LE, S24_32BE, U8 }, layout=(string)interleaved, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-alaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-mulaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	properties:
		device.description = "Monitor\ of\ Built-in\ Audio\ Analog\ Stereo"
		device.class = monitor
		alsa.card = 1
		alsa.card_name = tegra-snd-t210ref-mobile-rt565x
		alsa.long_card_name = tegra-snd-t210ref-mobile-rt565x
		device.bus_path = platform-sound
		sysfs.path = /devices/sound/sound/card1
		device.form_factor = internal
		device.string = 1
		module-udev-detect.discovered = 1
		device.icon_name = audio-card
	gst-launch-1.0 pulsesrc device=alsa_output.platform-sound.analog-stereo.monitor ! ...


Device found:

	name  : Built-in Audio Analog Stereo
	class : Audio/Source
	caps  : audio/x-raw, format=(string){ S16LE, S16BE, F32LE, F32BE, S32LE, S32BE, S24LE, S24BE, S24_32LE, S24_32BE, U8 }, layout=(string)interleaved, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-alaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-mulaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	properties:
		alsa.resolution_bits = 16
		device.api = alsa
		device.class = sound
		alsa.class = generic
		alsa.subclass = generic-mix
		alsa.name = ""
		alsa.id = "ADMAIF1\ CIF\ ADMAIF1-0"
		alsa.subdevice = 0
		alsa.subdevice_name = "subdevice\ \#0"
		alsa.device = 0
		alsa.card = 1
		alsa.card_name = tegra-snd-t210ref-mobile-rt565x
		alsa.long_card_name = tegra-snd-t210ref-mobile-rt565x
		device.bus_path = platform-sound
		sysfs.path = /devices/sound/sound/card1
		device.form_factor = internal
		device.string = front:1
		device.buffering.buffer_size = 32768
		device.buffering.fragment_size = 16384
		device.access_mode = mmap+timer
		device.profile.name = analog-stereo
		device.profile.description = "Analog\ Stereo"
		device.description = "Built-in\ Audio\ Analog\ Stereo"
		module-udev-detect.discovered = 1
		device.icon_name = audio-card
	gst-launch-1.0 pulsesrc device=alsa_input.platform-sound.analog-stereo ! ...


Device found:

	name  : Built-in Audio Digital Stereo (HDMI)
	class : Audio/Sink
	caps  : audio/x-raw, format=(string){ S16LE, S16BE, F32LE, F32BE, S32LE, S32BE, S24LE, S24BE, S24_32LE, S24_32BE, U8 }, layout=(string)interleaved, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-alaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-mulaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	properties:
		alsa.resolution_bits = 16
		device.api = alsa
		device.class = sound
		alsa.class = generic
		alsa.subclass = generic-mix
		alsa.name = "HDMI\ 0"
		alsa.id = "HDMI\ 0"
		alsa.subdevice = 0
		alsa.subdevice_name = "subdevice\ \#0"
		alsa.device = 3
		alsa.card = 0
		alsa.card_name = tegra-hda
		alsa.long_card_name = "tegra-hda\ at\ 0x70038000\ irq\ 83"
		device.bus_path = platform-70030000.hda
		sysfs.path = /devices/70030000.hda/sound/card0
		device.form_factor = internal
		device.string = hdmi:0
		device.buffering.buffer_size = 65536
		device.buffering.fragment_size = 32768
		device.access_mode = mmap+timer
		device.profile.name = hdmi-stereo
		device.profile.description = "Digital\ Stereo\ \(HDMI\)"
		device.description = "Built-in\ Audio\ Digital\ Stereo\ \(HDMI\)"
		alsa.mixer_name = "Nvidia\ Tegra210\ HDMI/DP"
		alsa.components = "HDA:10de0029\,10de0101\,00100100"
		module-udev-detect.discovered = 1
		device.icon_name = audio-card
	gst-launch-1.0 ... ! pulsesink device=alsa_output.platform-70030000.hda.hdmi-stereo


Device found:

	name  : Built-in Audio Analog Stereo
	class : Audio/Sink
	caps  : audio/x-raw, format=(string){ S16LE, S16BE, F32LE, F32BE, S32LE, S32BE, S24LE, S24BE, S24_32LE, S24_32BE, U8 }, layout=(string)interleaved, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-alaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	        audio/x-mulaw, rate=(int)[ 1, 2147483647 ], channels=(int)[ 1, 32 ];
	properties:
		alsa.resolution_bits = 16
		device.api = alsa
		device.class = sound
		alsa.class = generic
		alsa.subclass = generic-mix
		alsa.name = ""
		alsa.id = "ADMAIF1\ CIF\ ADMAIF1-0"
		alsa.subdevice = 0
		alsa.subdevice_name = "subdevice\ \#0"
		alsa.device = 0
		alsa.card = 1
		alsa.card_name = tegra-snd-t210ref-mobile-rt565x
		alsa.long_card_name = tegra-snd-t210ref-mobile-rt565x
		device.bus_path = platform-sound
		sysfs.path = /devices/sound/sound/card1
		device.form_factor = internal
		device.string = front:1
		device.buffering.buffer_size = 32768
		device.buffering.fragment_size = 16384
		device.access_mode = mmap+timer
		device.profile.name = analog-stereo
		device.profile.description = "Analog\ Stereo"
		device.description = "Built-in\ Audio\ Analog\ Stereo"
		module-udev-detect.discovered = 1
		device.icon_name = audio-card
	gst-launch-1.0 ... ! pulsesink device=alsa_output.platform-sound.analog-stereo

The results showed that the camera device was not connected.
However, when I entered

gst-launch-1.0 nvarguscamerasrc ! nvoverlaysink

the video input from the camera was displayed on the screen.

By the way, the camera I am using is
“SainSmart IMX219 camera module, 8MP sensor for NVIDIA Jetson Nano 160 degree FoV 3280x2464 resolution, RoHS certified”.

thanks.

Hi,

Could you check if the below comment also works for your use case?

Thanks.