Hi, i am using a darknet for object detection. I have been trying to apply the weight file that we have trained in YOLOv4 to the camera for a while now.
However, when I try to run the darknet demo, I get a green screen when i run the command below.
./darknet detector demo data/obj.data cfg/yolov4-obj.cfg weights/yolov4-obj_3000.weights -c 0
this is the output
./darknet detector demo data/obj.data cfg/yolov4-obj.cfg weights/yolov4-obj_3000.weights -c 0
GPU isn't used
OpenCV version: 4.1.1
Demo
mini_batch = 1, batch = 1, time_steps = 1, train = 0
layer filters size/strd(dil) input output
0 conv 32 3 x 3/ 1 32 x 32 x 3 -> 32 x 32 x 32 0.002 BF
1 conv 64 3 x 3/ 2 32 x 32 x 32 -> 16 x 16 x 64 0.009 BF
2 conv 64 1 x 1/ 1 16 x 16 x 64 -> 16 x 16 x 64 0.002 BF
3 route 1 -> 16 x 16 x 64
4 conv 64 1 x 1/ 1 16 x 16 x 64 -> 16 x 16 x 64 0.002 BF
5 conv 32 1 x 1/ 1 16 x 16 x 64 -> 16 x 16 x 32 0.001 BF
6 conv 64 3 x 3/ 1 16 x 16 x 32 -> 16 x 16 x 64 0.009 BF
7 Shortcut Layer: 4, wt = 0, wn = 0, outputs: 16 x 16 x 64 0.000 BF
8 conv 64 1 x 1/ 1 16 x 16 x 64 -> 16 x 16 x 64 0.002 BF
9 route 8 2 -> 16 x 16 x 128
10 conv 64 1 x 1/ 1 16 x 16 x 128 -> 16 x 16 x 64 0.004 BF
11 conv 128 3 x 3/ 2 16 x 16 x 64 -> 8 x 8 x 128 0.009 BF
12 conv 64 1 x 1/ 1 8 x 8 x 128 -> 8 x 8 x 64 0.001 BF
13 route 11 -> 8 x 8 x 128
14 conv 64 1 x 1/ 1 8 x 8 x 128 -> 8 x 8 x 64 0.001 BF
15 conv 64 1 x 1/ 1 8 x 8 x 64 -> 8 x 8 x 64 0.001 BF
16 conv 64 3 x 3/ 1 8 x 8 x 64 -> 8 x 8 x 64 0.005 BF
17 Shortcut Layer: 14, wt = 0, wn = 0, outputs: 8 x 8 x 64 0.000 BF
18 conv 64 1 x 1/ 1 8 x 8 x 64 -> 8 x 8 x 64 0.001 BF
19 conv 64 3 x 3/ 1 8 x 8 x 64 -> 8 x 8 x 64 0.005 BF
20 Shortcut Layer: 17, wt = 0, wn = 0, outputs: 8 x 8 x 64 0.000 BF
21 conv 64 1 x 1/ 1 8 x 8 x 64 -> 8 x 8 x 64 0.001 BF
22 route 21 12 -> 8 x 8 x 128
23 conv 128 1 x 1/ 1 8 x 8 x 128 -> 8 x 8 x 128 0.002 BF
24 conv 256 3 x 3/ 2 8 x 8 x 128 -> 4 x 4 x 256 0.009 BF
25 conv 128 1 x 1/ 1 4 x 4 x 256 -> 4 x 4 x 128 0.001 BF
26 route 24 -> 4 x 4 x 256
27 conv 128 1 x 1/ 1 4 x 4 x 256 -> 4 x 4 x 128 0.001 BF
28 conv 128 1 x 1/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.001 BF
29 conv 128 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.005 BF
30 Shortcut Layer: 27, wt = 0, wn = 0, outputs: 4 x 4 x 128 0.000 BF
31 conv 128 1 x 1/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.001 BF
32 conv 128 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.005 BF
33 Shortcut Layer: 30, wt = 0, wn = 0, outputs: 4 x 4 x 128 0.000 BF
34 conv 128 1 x 1/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.001 BF
35 conv 128 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.005 BF
36 Shortcut Layer: 33, wt = 0, wn = 0, outputs: 4 x 4 x 128 0.000 BF
37 conv 128 1 x 1/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.001 BF
38 conv 128 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.005 BF
39 Shortcut Layer: 36, wt = 0, wn = 0, outputs: 4 x 4 x 128 0.000 BF
40 conv 128 1 x 1/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.001 BF
41 conv 128 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.005 BF
42 Shortcut Layer: 39, wt = 0, wn = 0, outputs: 4 x 4 x 128 0.000 BF
43 conv 128 1 x 1/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.001 BF
44 conv 128 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.005 BF
45 Shortcut Layer: 42, wt = 0, wn = 0, outputs: 4 x 4 x 128 0.000 BF
46 conv 128 1 x 1/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.001 BF
47 conv 128 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.005 BF
48 Shortcut Layer: 45, wt = 0, wn = 0, outputs: 4 x 4 x 128 0.000 BF
49 conv 128 1 x 1/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.001 BF
50 conv 128 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.005 BF
51 Shortcut Layer: 48, wt = 0, wn = 0, outputs: 4 x 4 x 128 0.000 BF
52 conv 128 1 x 1/ 1 4 x 4 x 128 -> 4 x 4 x 128 0.001 BF
53 route 52 25 -> 4 x 4 x 256
54 conv 256 1 x 1/ 1 4 x 4 x 256 -> 4 x 4 x 256 0.002 BF
55 conv 512 3 x 3/ 2 4 x 4 x 256 -> 2 x 2 x 512 0.009 BF
56 conv 256 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 256 0.001 BF
57 route 55 -> 2 x 2 x 512
58 conv 256 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 256 0.001 BF
59 conv 256 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.001 BF
60 conv 256 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.005 BF
61 Shortcut Layer: 58, wt = 0, wn = 0, outputs: 2 x 2 x 256 0.000 BF
62 conv 256 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.001 BF
63 conv 256 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.005 BF
64 Shortcut Layer: 61, wt = 0, wn = 0, outputs: 2 x 2 x 256 0.000 BF
65 conv 256 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.001 BF
66 conv 256 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.005 BF
67 Shortcut Layer: 64, wt = 0, wn = 0, outputs: 2 x 2 x 256 0.000 BF
68 conv 256 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.001 BF
69 conv 256 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.005 BF
70 Shortcut Layer: 67, wt = 0, wn = 0, outputs: 2 x 2 x 256 0.000 BF
71 conv 256 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.001 BF
72 conv 256 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.005 BF
73 Shortcut Layer: 70, wt = 0, wn = 0, outputs: 2 x 2 x 256 0.000 BF
74 conv 256 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.001 BF
75 conv 256 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.005 BF
76 Shortcut Layer: 73, wt = 0, wn = 0, outputs: 2 x 2 x 256 0.000 BF
77 conv 256 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.001 BF
78 conv 256 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.005 BF
79 Shortcut Layer: 76, wt = 0, wn = 0, outputs: 2 x 2 x 256 0.000 BF
80 conv 256 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.001 BF
81 conv 256 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.005 BF
82 Shortcut Layer: 79, wt = 0, wn = 0, outputs: 2 x 2 x 256 0.000 BF
83 conv 256 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 256 0.001 BF
84 route 83 56 -> 2 x 2 x 512
85 conv 512 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 512 0.002 BF
86 conv 1024 3 x 3/ 2 2 x 2 x 512 -> 1 x 1 x1024 0.009 BF
87 conv 512 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 512 0.001 BF
88 route 86 -> 1 x 1 x1024
89 conv 512 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 512 0.001 BF
90 conv 512 1 x 1/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.001 BF
91 conv 512 3 x 3/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.005 BF
92 Shortcut Layer: 89, wt = 0, wn = 0, outputs: 1 x 1 x 512 0.000 BF
93 conv 512 1 x 1/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.001 BF
94 conv 512 3 x 3/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.005 BF
95 Shortcut Layer: 92, wt = 0, wn = 0, outputs: 1 x 1 x 512 0.000 BF
96 conv 512 1 x 1/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.001 BF
97 conv 512 3 x 3/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.005 BF
98 Shortcut Layer: 95, wt = 0, wn = 0, outputs: 1 x 1 x 512 0.000 BF
99 conv 512 1 x 1/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.001 BF
100 conv 512 3 x 3/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.005 BF
101 Shortcut Layer: 98, wt = 0, wn = 0, outputs: 1 x 1 x 512 0.000 BF
102 conv 512 1 x 1/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.001 BF
103 route 102 87 -> 1 x 1 x1024
104 conv 1024 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x1024 0.002 BF
105 conv 512 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 512 0.001 BF
106 conv 1024 3 x 3/ 1 1 x 1 x 512 -> 1 x 1 x1024 0.009 BF
107 conv 512 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 512 0.001 BF
108 max 5x 5/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.000 BF
109 route 107 -> 1 x 1 x 512
110 max 9x 9/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.000 BF
111 route 107 -> 1 x 1 x 512
112 max 13x13/ 1 1 x 1 x 512 -> 1 x 1 x 512 0.000 BF
113 route 112 110 108 107 -> 1 x 1 x2048
114 conv 512 1 x 1/ 1 1 x 1 x2048 -> 1 x 1 x 512 0.002 BF
115 conv 1024 3 x 3/ 1 1 x 1 x 512 -> 1 x 1 x1024 0.009 BF
116 conv 512 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 512 0.001 BF
117 conv 256 1 x 1/ 1 1 x 1 x 512 -> 1 x 1 x 256 0.000 BF
118 upsample 2x 1 x 1 x 256 -> 2 x 2 x 256
119 route 85 -> 2 x 2 x 512
120 conv 256 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 256 0.001 BF
121 route 120 118 -> 2 x 2 x 512
122 conv 256 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 256 0.001 BF
123 conv 512 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 512 0.009 BF
124 conv 256 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 256 0.001 BF
125 conv 512 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 512 0.009 BF
126 conv 256 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 256 0.001 BF
127 conv 128 1 x 1/ 1 2 x 2 x 256 -> 2 x 2 x 128 0.000 BF
128 upsample 2x 2 x 2 x 128 -> 4 x 4 x 128
129 route 54 -> 4 x 4 x 256
130 conv 128 1 x 1/ 1 4 x 4 x 256 -> 4 x 4 x 128 0.001 BF
131 route 130 128 -> 4 x 4 x 256
132 conv 128 1 x 1/ 1 4 x 4 x 256 -> 4 x 4 x 128 0.001 BF
133 conv 256 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 256 0.009 BF
134 conv 128 1 x 1/ 1 4 x 4 x 256 -> 4 x 4 x 128 0.001 BF
135 conv 256 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 256 0.009 BF
136 conv 128 1 x 1/ 1 4 x 4 x 256 -> 4 x 4 x 128 0.001 BF
137 conv 18 3 x 3/ 1 4 x 4 x 128 -> 4 x 4 x 18 0.001 BF
138 conv 18 1 x 1/ 1 4 x 4 x 18 -> 4 x 4 x 18 0.000 BF
139 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.20
nms_kind: greedynms (1), beta = 0.600000
140 route 136 -> 4 x 4 x 128
141 conv 256 3 x 3/ 2 4 x 4 x 128 -> 2 x 2 x 256 0.002 BF
142 route 141 126 -> 2 x 2 x 512
143 conv 256 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 256 0.001 BF
144 conv 512 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 512 0.009 BF
145 conv 256 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 256 0.001 BF
146 conv 512 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 512 0.009 BF
147 conv 256 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 256 0.001 BF
148 conv 512 3 x 3/ 1 2 x 2 x 256 -> 2 x 2 x 512 0.009 BF
149 conv 18 1 x 1/ 1 2 x 2 x 512 -> 2 x 2 x 18 0.000 BF
150 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.10
nms_kind: greedynms (1), beta = 0.600000
151 route 147 -> 2 x 2 x 256
152 conv 512 3 x 3/ 2 2 x 2 x 256 -> 1 x 1 x 512 0.002 BF
153 route 152 116 -> 1 x 1 x1024
154 conv 512 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 512 0.001 BF
155 conv 1024 3 x 3/ 1 1 x 1 x 512 -> 1 x 1 x1024 0.009 BF
156 conv 512 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 512 0.001 BF
157 conv 1024 3 x 3/ 1 1 x 1 x 512 -> 1 x 1 x1024 0.009 BF
158 conv 512 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 512 0.001 BF
159 conv 1024 3 x 3/ 1 1 x 1 x 512 -> 1 x 1 x1024 0.009 BF
160 conv 18 1 x 1/ 1 1 x 1 x1024 -> 1 x 1 x 18 0.000 BF
161 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.05
nms_kind: greedynms (1), beta = 0.600000
Total BFLOPS 0.344
avg_outputs = 3588
Loading weights from weights/yolov4-obj_3000.weights...
seen 64, trained: 192 K-images (3 Kilo-batches_64)
Done! Loaded 162 layers from weights-file
Webcam index: 0
[ WARN:0] global /home/nvidia/host/build_opencv/nv_opencv/modules/videoio/src/cap_gstreamer.cpp (1757) handleMessage OpenCV | GStreamer warning: Embedded video playback halted; module v4l2src0 reported: Internal data stream error.
[ WARN:0] global /home/nvidia/host/build_opencv/nv_opencv/modules/videoio/src/cap_gstreamer.cpp (886) open OpenCV | GStreamer warning: unable to start pipeline
[ WARN:0] global /home/nvidia/host/build_opencv/nv_opencv/modules/videoio/src/cap_gstreamer.cpp (480) isPipelinePlaying OpenCV | GStreamer warning: GStreamer: pipeline have not been created
Video stream: 3264 x 2464
Gtk-Message: 15:06:14.421: Failed to load module "canberra-gtk-module"
Objects:
FPS:0.0 AVG_FPS:0.0
Objects:
FPS:0.1 AVG_FPS:1.2
Objects:
im solely run on jetson nano and for camera, im using raspberry pi camera module 2, Sony IMX219 8MP and its capable of 3280 x 2464 px static images. how to solve this issues? Thanks