• Hardware Platform: Jetson Orin
• DeepStream Version: 6.3
• JetPack Version: 5.1.2-b104
• TensorRT Version: 8.5.2.1
I’m trying to perform action recognition using DeepStream with Python. I ran the deepstream-3d-action-recognition application from the sample_apps directory using Python bindings. The pipeline runs as streammux-preprocess-pgie (ActionRecognitionNet), but this application works for a single object. I want to run the ActionRecognitionNet model as an SGIE to perform inference for each detected object. The new pipeline is as follows:
Streammux - PGIE - Tracker - Preprocess - SGIE
The pipeline runs, but the SGIE doesn’t perform any inference. The configurations are as follows:
PGIE:
[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
tlt-model-key=tlt_encode
tlt-encoded-model=peoplenet/resnet34_peoplenet_int8.etlt
labelfile-path=peoplenet/labels_peoplenet.txt
model-engine-file=peoplenet/resnet34_peoplenet_int8.etlt_b2_gpu0_int8.engine
int8-calib-file=peoplenet/resnet34_peoplenet_int8.txt
input-dims=3;544;960;0
uff-input-blob-name=input_1
batch-size=2
process-mode=1
model-color-format=0
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=1
num-detected-classes=3
cluster-mode=2
interval=0
gie-unique-id=1
output-blob-names=output_bbox/BiasAdd;output_cov/Sigmoid
#input-tensor-from-meta=1
output-tensor-meta=1
[class-attrs-all]
topk=20
nms-iou-threshold=0.5
pre-cluster-threshold=0.2
Preprocess:
[property]
enable=1
target-unique-ids=3
operate-on-gie-id=1
network-input-order=0
process-on-frame=0
unique-id=2
gpu-id=0
maintain-aspect-ratio=0
symmetric-padding=0
processing-width=224
processing-height=224
scaling-buf-pool-size=6
tensor-buf-pool-size=6
network-input-shape= 4;3;224;224
network-color-format=1
tensor-data-type=0
tensor-name=input_1
scaling-pool-memory-type=0
scaling-pool-compute-hw=1
scaling-filter=0
custom-lib-path=/opt/nvidia/deepstream/deepstream/lib/gst-plugins/libcustom2d_preprocess.so
custom-tensor-preparation-function=CustomTensorPreparation
[user-configs]
pixel-normalization-factor=1
[group-0]
src-ids=0
operate-on-class-ids=-1
custom-input-transformation-function=CustomAsyncTransformation
process-on-all-objects=1
process-on-roi=0
input-object-min-width=100
input-object-min-height=100
input-object-max-width=500
input-object-max-height=500
SGIE:
[property]
gpu-id=0
tlt-encoded-model=./resnet18_2d_rgb_hmdb5_32.etlt
tlt-model-key=nvidia_tao
model-engine-file=./resnet18_2d_rgb_hmdb5_32.etlt_b4_gpu0_fp32.engine
force-implicit-batch-dim=1
labelfile-path=labels.txt
batch-size=4
process-mode=2
network-mode=0
gie-unique-id=3
network-type=100
operate-on-gie-id=2
input-object-min-width=64
input-object-min-height=64
model-color-format=1
classifier-async-mode=1
input-tensor-from-meta=1
output-tensor-meta=1
tensor-meta-pool-size=8
num-detected-classes=5
Is the ActionRecognitionNet model not working as an SGIE? Can you help me?