Age Gender - Access Tensor Meta from SGIE nvinfer in Jetson Xavier NX

• Hardware Platform (Jetson / GPU) Jetson
• DeepStream Version 6.1.1
• JetPack Version (valid for Jetson only) 5.0.2
• TensorRT Version 8.4
• NVIDIA GPU Driver Version (valid for GPU only)

• How to reproduce the issue ? (This is for bugs. Including which sample app is using, the configuration files content, the command line used and other details for reproducing) python3 facedetect_tensor_meta.py -i file:///

I was trying to access tensor meta data from secondary inference, i am not good at C++ to write custom post processing, so i decided accessing tensormeta but both object tensormeta and frame tensormeta returned None.

i am using age and gender model from this genderage it is a single classification model which gives both gender and age.

i used face detection model from NVIDA NGC and it is detecting faces.

Please find the python code and sgie config file.

facedetect_tensor_meta.py

#!/usr/bin/env python3

from pathlib import Path
import sys
sys.path.append('../')
import platform
import configparser

import gi
gi.require_version('Gst', '1.0')
from gi.repository import GObject, Gst
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
from gi.repository import GLib
from ctypes import *
import time
from datetime import datetime
import math
from common.FPS import GETFPS
import argparse

import pyds
import cv2
import numpy as np
from common.FPS import PERF_DATA

import pdb

fps_streams={}
perf_data = None

MAX_DISPLAY_LEN=64
MUXER_OUTPUT_WIDTH=1920
MUXER_OUTPUT_HEIGHT=1080
MUXER_BATCH_TIMEOUT_USEC=4000000
TILED_OUTPUT_WIDTH=1280
TILED_OUTPUT_HEIGHT=720
GST_CAPS_FEATURES_NVMM="memory:NVMM"
OSD_PROCESS_MODE= 0
OSD_DISPLAY_TEXT= 1

# torch.set_printoptions(precision=20)

PGIE_CLASS_ID_FACE = 0
past_tracking_meta=[0]

alert_thresh = 60
            
def sgie_src_pad_buffer_probe(pad,info,u_data):
    frame_number=0
    obj_counter = {
        PGIE_CLASS_ID_FACE:0
    }
    num_rects=0
    gst_buffer = info.get_buffer()
    if not gst_buffer:
        print("Unable to get GstBuffer ")
        return
    batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
    l_frame = batch_meta.frame_meta_list
    while l_frame is not None:
        try:
            frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
        except StopIteration:
            break

        frame_number=frame_meta.frame_num
        num_rects = frame_meta.num_obj_meta
        l_obj=frame_meta.obj_meta_list
        while l_obj is not None:
            try:
                obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
            except StopIteration:
                break
            obj_counter[PGIE_CLASS_ID_FACE] += 1
            l_user_meta = obj_meta.obj_user_meta_list
            print("object", l_user_meta)
            while l_user_meta:
                try:
                    user_meta = pyds.NvDsUserMeta.cast(l_user_meta.data)
                except StopIteration:
                    break
                if (user_meta.base_meta.meta_type
                        != pyds.NvDsMetaType.NVDSINFER_TENSOR_OUTPUT_META):
                    continue
                tensor_meta = pyds.NvDsInferTensorMeta.cast(user_meta.user_meta_data)
                print("Object meta Unique id: {}".format(tensor_meta.unique_id))
                # access tensor meta data of objects.


                try:
                    l_user_meta = l_user_meta.next
                except StopIteration:
                    break

            try: 
                l_obj=l_obj.next
            except StopIteration:
                break

        l_user = frame_meta.frame_user_meta_list
        print("frame", l_user)
        while l_user is not None:
            try:
                user_meta = pyds.NvDsUserMeta.cast(l_user.data)
            except StopIteration:
                break

            if (user_meta.base_meta.meta_type != pyds.NvDsMetaType.NVDSINFER_TENSOR_OUTPUT_META):
                continue

            tensor_meta = pyds.NvDsInferTensorMeta.cast(user_meta.user_meta_data)
            print("Frame meta Unique id: {}".format(tensor_meta.unique_id))
            
            try:
                l_user = l_user.next
            except StopIteration:
                break

        display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta)
        display_meta.num_labels = 1
        py_nvosd_text_params = display_meta.text_params[0]
        py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Face_count={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_FACE])
        py_nvosd_text_params.x_offset = 10
        py_nvosd_text_params.y_offset = 12
        py_nvosd_text_params.font_params.font_name = "Serif"
        py_nvosd_text_params.font_params.font_size = 10
        # set(red, green, blue, alpha); set to White
        py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0)
        py_nvosd_text_params.set_bg_clr = 1
        # set(red, green, blue, alpha); set to Black
        py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0)
        # Using pyds.get_string() to get display_text as string
        # print(pyds.get_string(py_nvosd_text_params.display_text))
        pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta)
        # Update frame rate through this probe
        stream_index = "stream{0}".format(frame_meta.pad_index)
        global perf_data
        perf_data.update_fps(stream_index)

        try:
            l_frame=l_frame.next
        except StopIteration:
            break
                        
    return Gst.PadProbeReturn.OK

def draw_bounding_boxes(image, box, label, id_, color):
    x1 = int(box[0])
    y1 = int(box[2])
    x2 = int(box[1])
    y2 = int(box[3])
    image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2, cv2.LINE_4)
    image = cv2.putText(image, label+ f'-{id_}', (x1 - 10, y1 - 10), 
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (0, 0, 255, 0), 2)
    return image


def cb_newpad(decodebin, decoder_src_pad,data):
    print("In cb_newpad\n")
    caps=decoder_src_pad.get_current_caps()
    if not caps:
        caps = decoder_src_pad.query_caps()
    gststruct=caps.get_structure(0)
    gstname=gststruct.get_name()
    source_bin=data
    features=caps.get_features(0)
    print("gstname=",gstname)
    if(gstname.find("video")!=-1):
        print("features=",features)
        if features.contains("memory:NVMM"):
            # Get the source bin ghost pad
            bin_ghost_pad=source_bin.get_static_pad("src")
            if not bin_ghost_pad.set_target(decoder_src_pad):
                sys.stderr.write("Failed to link decoder src pad to source bin ghost pad\n")
        else:
            sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n")

def decodebin_child_added(child_proxy,Object,name,user_data):
    print("Decodebin child added:", name, "\n")
    if(name.find("decodebin") != -1):
        Object.connect("child-added",decodebin_child_added,user_data)

    if "source" in name:
        source_element = child_proxy.get_by_name("source")
        if source_element.find_property('drop-on-latency') != None:
            Object.set_property("drop-on-latency", True)


def create_source_bin(index,uri):
    print("Creating source bin")

    # Create a source GstBin to abstract this bin's content from the rest of the
    # pipeline
    bin_name="source-bin-%02d" %index
    print(bin_name)
    nbin=Gst.Bin.new(bin_name)
    if not nbin:
        sys.stderr.write(" Unable to create source bin \n")
    if file_loop:
        # use nvurisrcbin to enable file-loop
        uri_decode_bin=Gst.ElementFactory.make("nvurisrcbin", "uri-decode-bin")
        uri_decode_bin.set_property("file-loop", 1)
        uri_decode_bin.set_property("cudadec-memtype", 0)
    else:
        uri_decode_bin=Gst.ElementFactory.make("uridecodebin", "uri-decode-bin")
    if not uri_decode_bin:
        sys.stderr.write(" Unable to create uri decode bin \n")
    uri_decode_bin.set_property("uri",uri)
    uri_decode_bin.connect("pad-added",cb_newpad,nbin)
    uri_decode_bin.connect("child-added",decodebin_child_added,nbin)
    Gst.Bin.add(nbin,uri_decode_bin)
    bin_pad=nbin.add_pad(Gst.GhostPad.new_no_target("src",Gst.PadDirection.SRC))
    if not bin_pad:
        sys.stderr.write(" Failed to add ghost pad in source bin \n")
        return None
    return nbin

def main(args, requested_pgie=None, config=None, disable_probe=False):
    global perf_data
    perf_data = PERF_DATA(len(args))
    number_sources=len(args)
    Gst.init(None)
    print("Creating Pipeline \n ")
    pipeline = Gst.Pipeline()
    is_live = False

    if not pipeline:
        sys.stderr.write(" Unable to create Pipeline \n")
    print("Creating streamux \n ")
    streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
    if not streammux:
        sys.stderr.write(" Unable to create NvStreamMux \n")

    pipeline.add(streammux)
    for i in range(number_sources):
        print("Creating source_bin ",i," \n ")
        uri_name=args[i]
        if uri_name.find("rtsp://") == 0 :
            is_live = True
        source_bin=create_source_bin(i, uri_name)
        if not source_bin:
            sys.stderr.write("Unable to create source bin \n")
        pipeline.add(source_bin)
        padname="sink_%u" %i
        sinkpad= streammux.get_request_pad(padname) 
        if not sinkpad:
            sys.stderr.write("Unable to create sink pad bin \n")
        srcpad=source_bin.get_static_pad("src")
        if not srcpad:
            sys.stderr.write("Unable to create src pad bin \n")
        srcpad.link(sinkpad)
    queue1=Gst.ElementFactory.make("queue","queue1")
    queue2=Gst.ElementFactory.make("queue","queue2")
    queue3=Gst.ElementFactory.make("queue","queue3")
    queue4=Gst.ElementFactory.make("queue","queue4")
    queue5=Gst.ElementFactory.make("queue","queue5")
    pipeline.add(queue1)
    pipeline.add(queue2)
    pipeline.add(queue3)
    pipeline.add(queue4)
    pipeline.add(queue5)

    nvdslogger = None

    print("Creating Pgie \n ")
    if requested_pgie != None and (requested_pgie == 'nvinferserver' or requested_pgie == 'nvinferserver-grpc') :
        pgie = Gst.ElementFactory.make("nvinferserver", "primary-inference")
    elif requested_pgie != None and requested_pgie == 'nvinfer':
        pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
    else:
        pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")

    if not pgie:
        sys.stderr.write(" Unable to create pgie :  %s\n" % requested_pgie)

    sgie1 = Gst.ElementFactory.make("nvinfer", "secondary1-nvinference-engine")
    if not sgie1:
        sys.stderr.write(" Unable to make sgie1 \n")

    if disable_probe:
        # Use nvdslogger for perf measurement instead of probe function
        print ("Creating nvdslogger \n")
        nvdslogger = Gst.ElementFactory.make("nvdslogger", "nvdslogger")

    print("Creating tiler \n ")
    tiler=Gst.ElementFactory.make("nvmultistreamtiler", "nvtiler")
    if not tiler:
        sys.stderr.write(" Unable to create tiler \n")
    print("Creating nvvidconv \n ")
    nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
    if not nvvidconv:
        sys.stderr.write(" Unable to create nvvidconv \n")
    print("Creating nvosd \n ")
    nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
    if not nvosd:
        sys.stderr.write(" Unable to create nvosd \n")
    nvosd.set_property('process-mode',OSD_PROCESS_MODE)
    nvosd.set_property('display-text',OSD_DISPLAY_TEXT)

    if file_loop:
        if is_aarch64():
            # Set nvbuf-memory-type=4 for aarch64 for file-loop (nvurisrcbin case)
            streammux.set_property('nvbuf-memory-type', 4)
        else:
            # Set nvbuf-memory-type=2 for x86 for file-loop (nvurisrcbin case)
            streammux.set_property('nvbuf-memory-type', 2)

    if no_display:
        print("Creating Fakesink \n")
        sink = Gst.ElementFactory.make("fakesink", "fakesink")
        sink.set_property('enable-last-sample', 0)
        sink.set_property('sync', 0)
    else:
        if is_aarch64():
            print("Creating nv3dsink \n")
            sink = Gst.ElementFactory.make("nv3dsink", "nv3d-sink")
            if not sink:
                sys.stderr.write(" Unable to create nv3dsink \n")
        else:
            print("Creating EGLSink \n")
            sink = Gst.ElementFactory.make("nveglglessink", "nvvideo-renderer")
            if not sink:
                sys.stderr.write(" Unable to create egl sink \n")

    if not sink:
        sys.stderr.write(" Unable to create sink element \n")

    if is_live:
        print("At least one of the sources is live")
        streammux.set_property('live-source', 1)

    streammux.set_property('width', 1920)
    streammux.set_property('height', 1080)
    streammux.set_property('batch-size', number_sources)
    streammux.set_property('batched-push-timeout', 4000000)
    if requested_pgie == "nvinferserver" and config != None:
        pgie.set_property('config-file-path', config)
    elif requested_pgie == "nvinferserver-grpc" and config != None:
        pgie.set_property('config-file-path', config)
    elif requested_pgie == "nvinfer" and config != None:
        pgie.set_property('config-file-path', config)
    else:
        pgie.set_property('config-file-path', "config_infer_primary_facedetect.txt")
        sgie1.set_property('config-file-path', "age_gender_sgi_tensormeta_config.txt")
    pgie_batch_size=pgie.get_property("batch-size")
    if(pgie_batch_size != number_sources):
        print("WARNING: Overriding infer-config batch-size",pgie_batch_size," with number of sources ", number_sources," \n")
        pgie.set_property("batch-size",number_sources)
    tiler_rows=int(math.sqrt(number_sources))
    tiler_columns=int(math.ceil((1.0*number_sources)/tiler_rows))
    tiler.set_property("rows",tiler_rows)
    tiler.set_property("columns",tiler_columns)
    tiler.set_property("width", TILED_OUTPUT_WIDTH)
    tiler.set_property("height", TILED_OUTPUT_HEIGHT)
    sink.set_property("qos",0)

    print("Adding elements to Pipeline \n")
    pipeline.add(pgie)
    pipeline.add(sgie1)
    if nvdslogger:
        pipeline.add(nvdslogger)
    pipeline.add(tiler)
    pipeline.add(nvvidconv)
    pipeline.add(nvosd)
    pipeline.add(sink)

    print("Linking elements in the Pipeline \n")
    streammux.link(queue1)
    queue1.link(pgie)
    pgie.link(sgie1)
    sgie1.link(queue2)
    if nvdslogger:
        queue2.link(nvdslogger)
        nvdslogger.link(tiler)
    else:
        queue2.link(tiler)
    tiler.link(queue3)
    queue3.link(nvvidconv)
    nvvidconv.link(queue4)
    queue4.link(nvosd)
    nvosd.link(queue5)
    queue5.link(sink)   

    # create an event loop and feed gstreamer bus mesages to it
    loop = GLib.MainLoop()
    bus = pipeline.get_bus()
    bus.add_signal_watch()
    bus.connect ("message", bus_call, loop)
    sgie_src_pad=sgie1.get_static_pad("sink")
    if not sgie_src_pad:
        sys.stderr.write(" Unable to get src pad \n")
    else:
        sgie_src_pad.add_probe(Gst.PadProbeType.BUFFER, sgie_src_pad_buffer_probe, 0)
        # perf callback function to print fps every 5 sec
        GLib.timeout_add(5000, perf_data.perf_print_callback)

    # List the sources
    print("Now playing...")
    for i, source in enumerate(args):
        print(i, ": ", source)

    print("Starting pipeline \n")
    # start play back and listed to events		
    pipeline.set_state(Gst.State.PLAYING)
    try:
        loop.run()
    except:
        pass
    # cleanup
    print("Exiting app\n")
    pipeline.set_state(Gst.State.NULL)

def parse_args():

    parser = argparse.ArgumentParser(prog="deepstream_test_3",
                    description="deepstream-test3 multi stream, multi model inference reference app")
    parser.add_argument(
        "-i",
        "--input",
        help="Path to input streams",
        nargs="+",
        metavar="URIs",
        default=["a"],
        required=True,
    )
    parser.add_argument(
        "-c",
        "--configfile",
        metavar="config_location.txt",
        default=None,
        help="Choose the config-file to be used with specified pgie",
    )
    parser.add_argument(
        "-g",
        "--pgie",
        default=None,
        help="Choose Primary GPU Inference Engine",
        choices=["nvinfer", "nvinferserver", "nvinferserver-grpc"],
    )
    parser.add_argument(
        "--no-display",
        action="store_true",
        default=False,
        dest='no_display',
        help="Disable display of video output",
    )
    parser.add_argument(
        "--file-loop",
        action="store_true",
        default=False,
        dest='file_loop',
        help="Loop the input file sources after EOS",
    )
    parser.add_argument(
        "--disable-probe",
        action="store_true",
        default=False,
        dest='disable_probe',
        help="Disable the probe function and use nvdslogger for FPS",
    )
    parser.add_argument(
        "-s",
        "--silent",
        action="store_true",
        default=False,
        dest='silent',
        help="Disable verbose output",
    )
    # Check input arguments
    if len(sys.argv) == 1:
        parser.print_help(sys.stderr)
        sys.exit(1)
    args = parser.parse_args()

    stream_paths = args.input
    pgie = args.pgie
    config = args.configfile
    disable_probe = args.disable_probe
    global no_display
    global silent
    global file_loop
    no_display = args.no_display
    silent = args.silent
    file_loop = args.file_loop

    if config and not pgie or pgie and not config:
        sys.stderr.write ("\nEither pgie or configfile is missing. Please specify both! Exiting...\n\n\n\n")
        parser.print_help()
        sys.exit(1)
    if config:
        config_path = Path(config)
        if not config_path.is_file():
            sys.stderr.write ("Specified config-file: %s doesn't exist. Exiting...\n\n" % config)
            sys.exit(1)

    print(vars(args))
    return stream_paths, pgie, config, disable_probe

if __name__ == '__main__':
    stream_paths, pgie, config, disable_probe = parse_args()
    sys.exit(main(stream_paths, pgie, config, disable_probe))

age_gender_sgie_cinfig.txt

################################################################################
# SPDX-FileCopyrightText: Copyright (c) 2019-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################

# Following properties are mandatory when engine files are not specified:
#   int8-calib-file(Only in INT8)
#   Caffemodel mandatory properties: model-file, proto-file, output-blob-names
#   UFF: uff-file, input-dims, uff-input-blob-name, output-blob-names
#   ONNX: onnx-file
#
# Mandatory properties for detectors:
#   num-detected-classes
#
# Optional properties for detectors:
#   cluster-mode(Default=Group Rectangles), interval(Primary mode only, Default=0)
#   custom-lib-path,
#   parse-bbox-func-name
#
# Mandatory properties for classifiers:
#   classifier-threshold, is-classifier
#
# Optional properties for classifiers:
#   classifier-async-mode(Secondary mode only, Default=false)
#
# Optional properties in secondary mode:
#   operate-on-gie-id(Default=0), operate-on-class-ids(Defaults to all classes),
#   input-object-min-width, input-object-min-height, input-object-max-width,
#   input-object-max-height
#
# Following properties are always recommended:
#   batch-size(Default=1)
#
# Other optional properties:
#   net-scale-factor(Default=1), network-mode(Default=0 i.e FP32),
#   model-color-format(Default=0 i.e. RGB) model-engine-file, labelfile-path,
#   mean-file, gie-unique-id(Default=0), offsets, process-mode (Default=1 i.e. primary),
#   custom-lib-path, network-mode(Default=0 i.e FP32)
#
# The values in the config file are overridden by values set through GObject
# properties.

[property]
gpu-id=0
net-scale-factor=1
onnx-file=./models/age_gender/genderage.onnx
model-engine-file=./models/age_gender/genderage.onnx_b1_gpu0_fp32.engine
force-implicit-batch-dim=0
batch-size=1
# 0=FP32 and 1=INT8 2=FP16 mode
network-mode=0
network-type=1  # 0: Detector 1: Classifier 2: Segmentation 3: Instance Segmentation
#input-object-min-width=64
#input-object-min-height=64
# 1=Primary 2=Secondary
process-mode=2
model-color-format=1
gpu-id=0
gie-unique-id=2
operate-on-gie-id=1
operate-on-class-ids=0
#is-classifier=1
output-blob-names=fc1
classifier-async-mode=0
classifier-threshold=0.51
#scaling-filter=0
#scaling-compute-hw=0
output-tensor-meta=1
output-tensor-meta=true

If you want run the sgie without the tracker, try to modify

classifier-async-mode: 1

I have set the classifier-async-mode=1 in sgie config file but still there is no tensormeta.

Modify your code like below.

sgie_src_pad=sgie1.get_static_pad("src")

// use sample model in deepstream-test2
// I don't have your model
pgie.set_property('config-file-path', "dstest2_pgie_config.txt")
sgie1.set_property('config-file-path', "dstest2_sgie2_config.txt")

and use this configure

classifier-async-mode=0
output-tensor-meta=1

I can got the tensormeta successful.

Can you see bbox on display?

Yes, i can see the bounding boxes on display.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.