Hi,
We try to dump the network layer, input and output connection of cnn.h5:
Some of layers are not connected, and one of them is the error node.
Please check if there is any issue when converting the Keras network into TensorFlow graph first.
[b](<tf.Tensor 'conv2d_1/kernel:0' shape=(3, 3, 1, 32) dtype=float32>,)
(<tf.Tensor 'conv2d_1/bias:0' shape=(32,) dtype=float32>,)
(<tf.Tensor 'conv2d_2/kernel:0' shape=(3, 3, 32, 64) dtype=float32>,)
(<tf.Tensor 'conv2d_2/bias:0' shape=(64,) dtype=float32>,)
(<tf.Tensor 'dense_1/kernel:0' shape=(9216, 128) dtype=float32>,)
(<tf.Tensor 'dense_1/bias:0' shape=(128,) dtype=float32>,)
(<tf.Tensor 'dense_2/kernel:0' shape=(128, 10) dtype=float32>,)
(<tf.Tensor 'dense_2/bias:0' shape=(10,) dtype=float32>,)
(<tf.Tensor 'image_tensor_x:0' shape=(?, 28, 28, 1) dtype=float32>,)[/b]
(<tf.Tensor 'sequential/flatten_1/Reshape/shape:0' shape=(2,) dtype=int32>,)
(<tf.Tensor 'sequential/conv2d_1/Conv2D-0-PermConstNHWCToNCHW-LayoutOptimizer:0' shape=(4,) dtype=int32>,)
(<tf.Tensor 'sequential/max_pooling2d_1/MaxPool-0-0-PermConstNCHWToNHWC-LayoutOptimizer:0' shape=(4,) dtype=int32>,)
(<tf.Tensor 'sequential/conv2d_1/Conv2D-0-TransposeNHWCToNCHW-LayoutOptimizer:0' shape=(?, 1, 28, 28) dtype=float32>,)
Input: Tensor("image_tensor_x:0", shape=(?, 28, 28, 1), dtype=float32)
Input: Tensor("sequential/conv2d_1/Conv2D-0-PermConstNHWCToNCHW-LayoutOptimizer:0", shape=(4,), dtype=int32, device=/job:localhost/replica:0/task:0/device:GPU:0)
(<tf.Tensor 'sequential/conv2d_1/Conv2D:0' shape=(?, 32, 26, 26) dtype=float32>,)
Input: Tensor("sequential/conv2d_1/Conv2D-0-TransposeNHWCToNCHW-LayoutOptimizer:0", shape=(?, 1, 28, 28), dtype=float32, device=/job:localhost/replica:0/task:0/device:GPU:0)
Input: Tensor("conv2d_1/kernel:0", shape=(3, 3, 1, 32), dtype=float32)
(<tf.Tensor 'sequential/conv2d_1/BiasAdd:0' shape=(?, 32, 26, 26) dtype=float32>,)
Input: Tensor("sequential/conv2d_1/Conv2D:0", shape=(?, 32, 26, 26), dtype=float32)
Input: Tensor("conv2d_1/bias:0", shape=(32,), dtype=float32)
(<tf.Tensor 'sequential/conv2d_1/Relu:0' shape=(?, 32, 26, 26) dtype=float32>,)
Input: Tensor("sequential/conv2d_1/BiasAdd:0", shape=(?, 32, 26, 26), dtype=float32)
(<tf.Tensor 'sequential/conv2d_2/Conv2D:0' shape=(?, 64, 24, 24) dtype=float32>,)
Input: Tensor("sequential/conv2d_1/Relu:0", shape=(?, 32, 26, 26), dtype=float32)
Input: Tensor("conv2d_2/kernel:0", shape=(3, 3, 32, 64), dtype=float32)
(<tf.Tensor 'sequential/conv2d_2/BiasAdd:0' shape=(?, 64, 24, 24) dtype=float32>,)
Input: Tensor("sequential/conv2d_2/Conv2D:0", shape=(?, 64, 24, 24), dtype=float32)
Input: Tensor("conv2d_2/bias:0", shape=(64,), dtype=float32)
(<tf.Tensor 'sequential/conv2d_2/Relu:0' shape=(?, 64, 24, 24) dtype=float32>,)
Input: Tensor("sequential/conv2d_2/BiasAdd:0", shape=(?, 64, 24, 24), dtype=float32)
(<tf.Tensor 'sequential/max_pooling2d_1/MaxPool:0' shape=(?, 64, 12, 12) dtype=float32>,)
Input: Tensor("sequential/conv2d_2/Relu:0", shape=(?, 64, 24, 24), dtype=float32)
(<tf.Tensor 'sequential/max_pooling2d_1/MaxPool-0-0-TransposeNCHWToNHWC-LayoutOptimizer:0' shape=(?, 12, 12, 64) dtype=float32>,)
Input: Tensor("sequential/max_pooling2d_1/MaxPool:0", shape=(?, 64, 12, 12), dtype=float32)
Input: Tensor("sequential/max_pooling2d_1/MaxPool-0-0-PermConstNCHWToNHWC-LayoutOptimizer:0", shape=(4,), dtype=int32, device=/job:localhost/replica:0/task:0/device:GPU:0)
(<tf.Tensor 'sequential/flatten_1/Reshape:0' shape=(?, 9216) dtype=float32>,)
Input: Tensor("sequential/max_pooling2d_1/MaxPool-0-0-TransposeNCHWToNHWC-LayoutOptimizer:0", shape=(?, 12, 12, 64), dtype=float32, device=/job:localhost/replica:0/task:0/device:GPU:0)
Input: Tensor("sequential/flatten_1/Reshape/shape:0", shape=(2,), dtype=int32)
(<tf.Tensor 'sequential/dense_1/MatMul:0' shape=(?, 128) dtype=float32>,)
Input: Tensor("sequential/flatten_1/Reshape:0", shape=(?, 9216), dtype=float32)
Input: Tensor("dense_1/kernel:0", shape=(9216, 128), dtype=float32)
(<tf.Tensor 'sequential/dense_1/BiasAdd:0' shape=(?, 128) dtype=float32>,)
Input: Tensor("sequential/dense_1/MatMul:0", shape=(?, 128), dtype=float32)
Input: Tensor("dense_1/bias:0", shape=(128,), dtype=float32)
(<tf.Tensor 'sequential/dense_1/Relu:0' shape=(?, 128) dtype=float32>,)
Input: Tensor("sequential/dense_1/BiasAdd:0", shape=(?, 128), dtype=float32)
(<tf.Tensor 'sequential/dense_2/MatMul:0' shape=(?, 10) dtype=float32>,)
Input: Tensor("sequential/dense_1/Relu:0", shape=(?, 128), dtype=float32)
Input: Tensor("dense_2/kernel:0", shape=(128, 10), dtype=float32)
(<tf.Tensor 'sequential/dense_2/BiasAdd:0' shape=(?, 10) dtype=float32>,)
Input: Tensor("sequential/dense_2/MatMul:0", shape=(?, 10), dtype=float32)
Input: Tensor("dense_2/bias:0", shape=(10,), dtype=float32)
(<tf.Tensor 'sequential/dense_2/Softmax:0' shape=(?, 10) dtype=float32>,)
Input: Tensor("sequential/dense_2/BiasAdd:0", shape=(?, 10), dtype=float32)
Thanks.