Sorry for what may be a repetitive question, but this has me stumped.
I’m attempting to code a simple example program so that I can get a grasp of some of the CUDA tools. This function literally just adds two doubles together but on the GPU rather than the CPU. The code for this file is below:
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <iostream>
//Test CUDA function.
__global__ void add(double* out, double* a, double* b)
{
*out = *a + *b;
}
int helper(double* OUT, double* A, double* B);
int main()
{
double* a = new double(1);
double* b = new double(4);
double* out2 = new double(0);
helper(out2, a, b);
}
int helper(double *OUT, double* A, double* B)
{
cudaError_t cudaStatus;
cudaStatus = cudaSetDevice(0);
double* dev_out;
double* dev_a;
double* dev_b;
//Allocating
cudaMalloc((void**)&dev_out, sizeof(double));
cudaMalloc((void**)&dev_a, sizeof(double));
cudaMalloc((void**)&dev_b, sizeof(double));
//Copying
cudaMemcpy(dev_a, A, sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, B, sizeof(double), cudaMemcpyHostToDevice);
//Synchronization
cudaDeviceSynchronize();
//Get the Output
cudaStatus = cudaMemcpy(OUT, dev_out, sizeof(double), cudaMemcpyDefault);
if (cudaStatus != cudaSuccess)
{
std::cout << "NOT SUCCESSFUL" << std::endl;
}
//Printing
std::cout << *OUT << std::endl;
//Freeing Memory
cudaFree(dev_out);
cudaFree(dev_a);
cudaFree(dev_b);
return 0;
}
This program compiles and runs fine, and in fact if I put a printf() in the CUDA function I can actually see that the two numbers are added properly. However, when the data is copied back using cudaMemcpyDeviceToHost, the number that I receive is always 0, even though the cudaMemcpy is said to have succeeded.
However, if I run the similar template for Visual Studio 2019 CUDA example file:
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
__global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
int main()
{
const int arraySize = 5;
const int a[arraySize] = { 1, 2, 3, 4, 5 };
const int b[arraySize] = { 10, 20, 30, 40, 50 };
int c[arraySize] = { 0 };
// Add vectors in parallel.
cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
}
printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",
c[0], c[1], c[2], c[3], c[4]);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output).
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
addKernel<<<1, size>>>(dev_c, dev_a, dev_b);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}
This runs completely fine, despite the fact that nothing I can see is different other than the fact that it adds vectors rather than scalars.
Is it required for CUDA to add vectors or am I missing something obvious?