Hi Dusty, I did try with more epochs and still see the NaN model generated. Attaching the log and my dataset for reference. Pls take a look and let me know what could be wrong here.
Attaching data sets in two parts as the files are larger than 100MB.
cups_part1.zip (57.9 MB)
root@gvcjn-desktop:/jetson-inference/python/training/detection/ssd# python3 train_ssd.py --dataset-type=voc --data=data/cups --model-dir=models/cups --batch-size=2 --workers=1 --epochs=3
2022-09-11 02:36:26 - Using CUDA…
2022-09-11 02:36:26 - Namespace(balance_data=False, base_net=None, base_net_lr=0.001, batch_size=2, checkpoint_folder=‘models/cups’, dataset_type=‘voc’, datasets=[‘data/cups’], debug_steps=10, extra_layers_lr=None, freeze_base_net=False, freeze_net=False, gamma=0.1, lr=0.01, mb2_width_mult=1.0, milestones=‘80,100’, momentum=0.9, net=‘mb1-ssd’, num_epochs=3, num_workers=1, pretrained_ssd=‘models/mobilenet-v1-ssd-mp-0_675.pth’, resume=None, scheduler=‘cosine’, t_max=100, use_cuda=True, validation_epochs=1, weight_decay=0.0005)
2022-09-11 02:36:26 - Prepare training datasets.
2022-09-11 02:36:27 - VOC Labels read from file: (‘BACKGROUND’, ‘Pink’, ‘Orange’, ‘Yellow’, ‘white’)
2022-09-11 02:36:27 - Stored labels into file models/cups/labels.txt.
2022-09-11 02:36:27 - Train dataset size: 670
2022-09-11 02:36:27 - Prepare Validation datasets.
2022-09-11 02:36:27 - VOC Labels read from file: (‘BACKGROUND’, ‘Pink’, ‘Orange’, ‘Yellow’, ‘white’)
2022-09-11 02:36:27 - Validation dataset size: 670
2022-09-11 02:36:27 - Build network.
2022-09-11 02:36:27 - Init from pretrained ssd models/mobilenet-v1-ssd-mp-0_675.pth
2022-09-11 02:36:28 - Took 0.53 seconds to load the model.
2022-09-11 02:37:13 - Learning rate: 0.01, Base net learning rate: 0.001, Extra Layers learning rate: 0.01.
2022-09-11 02:37:14 - Uses CosineAnnealingLR scheduler.
2022-09-11 02:37:14 - Start training from epoch 0.
/usr/local/lib/python3.6/dist-packages/torch/optim/lr_scheduler.py:134: UserWarning: Detected call of lr_scheduler.step()
before optimizer.step()
. In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step()
before lr_scheduler.step()
. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at torch.optim — PyTorch 1.12 documentation
“torch.optim — PyTorch 1.12 documentation”, UserWarning)
/usr/local/lib/python3.6/dist-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, please use reduction=‘sum’ instead.
warnings.warn(warning.format(ret))
2022-09-11 02:39:12 - Epoch: 0, Step: 10/335, Avg Loss: 11.3822, Avg Regression Loss 3.0875, Avg Classification Loss: 8.2947
2022-09-11 02:39:24 - Epoch: 0, Step: 20/335, Avg Loss: 9.2260, Avg Regression Loss 3.5546, Avg Classification Loss: 5.6714
2022-09-11 02:39:29 - Epoch: 0, Step: 30/335, Avg Loss: 7.7749, Avg Regression Loss 2.5897, Avg Classification Loss: 5.1852
2022-09-11 02:39:34 - Epoch: 0, Step: 40/335, Avg Loss: 7.0474, Avg Regression Loss 2.6217, Avg Classification Loss: 4.4257
2022-09-11 02:39:38 - Epoch: 0, Step: 50/335, Avg Loss: 8.0076, Avg Regression Loss 2.1141, Avg Classification Loss: 5.8935
2022-09-11 02:39:45 - Epoch: 0, Step: 60/335, Avg Loss: 6.0375, Avg Regression Loss 1.6928, Avg Classification Loss: 4.3446
2022-09-11 02:39:50 - Epoch: 0, Step: 70/335, Avg Loss: 5.3666, Avg Regression Loss 1.5696, Avg Classification Loss: 3.7970
2022-09-11 02:39:58 - Epoch: 0, Step: 80/335, Avg Loss: 6.3329, Avg Regression Loss 2.2350, Avg Classification Loss: 4.0980
2022-09-11 02:40:02 - Epoch: 0, Step: 90/335, Avg Loss: 5.9979, Avg Regression Loss 2.0423, Avg Classification Loss: 3.9556
2022-09-11 02:40:06 - Epoch: 0, Step: 100/335, Avg Loss: 5.0405, Avg Regression Loss 1.2298, Avg Classification Loss: 3.8107
2022-09-11 02:40:10 - Epoch: 0, Step: 110/335, Avg Loss: 4.8876, Avg Regression Loss 1.2977, Avg Classification Loss: 3.5899
2022-09-11 02:40:15 - Epoch: 0, Step: 120/335, Avg Loss: 5.0144, Avg Regression Loss 1.1843, Avg Classification Loss: 3.8300
2022-09-11 02:40:20 - Epoch: 0, Step: 130/335, Avg Loss: 5.3371, Avg Regression Loss 1.4427, Avg Classification Loss: 3.8944
2022-09-11 02:40:24 - Epoch: 0, Step: 140/335, Avg Loss: 5.2135, Avg Regression Loss 1.4089, Avg Classification Loss: 3.8046
2022-09-11 02:40:28 - Epoch: 0, Step: 150/335, Avg Loss: 5.5782, Avg Regression Loss 1.5915, Avg Classification Loss: 3.9866
2022-09-11 02:40:34 - Epoch: 0, Step: 160/335, Avg Loss: 5.3204, Avg Regression Loss 1.5334, Avg Classification Loss: 3.7870
2022-09-11 02:40:38 - Epoch: 0, Step: 170/335, Avg Loss: 5.0619, Avg Regression Loss 1.6004, Avg Classification Loss: 3.4615
2022-09-11 02:40:42 - Epoch: 0, Step: 180/335, Avg Loss: 3.9702, Avg Regression Loss 0.7339, Avg Classification Loss: 3.2363
2022-09-11 02:40:46 - Epoch: 0, Step: 190/335, Avg Loss: 4.2404, Avg Regression Loss 1.0805, Avg Classification Loss: 3.1599
2022-09-11 02:41:02 - Epoch: 0, Step: 200/335, Avg Loss: 5.2811, Avg Regression Loss 1.7144, Avg Classification Loss: 3.5667
2022-09-11 02:41:10 - Epoch: 0, Step: 210/335, Avg Loss: 5.0336, Avg Regression Loss 0.8910, Avg Classification Loss: 4.1426
2022-09-11 02:41:15 - Epoch: 0, Step: 220/335, Avg Loss: 5.2741, Avg Regression Loss 1.8023, Avg Classification Loss: 3.4719
2022-09-11 02:41:20 - Epoch: 0, Step: 230/335, Avg Loss: 4.2335, Avg Regression Loss 1.0515, Avg Classification Loss: 3.1820
2022-09-11 02:41:24 - Epoch: 0, Step: 240/335, Avg Loss: 4.9408, Avg Regression Loss 1.3504, Avg Classification Loss: 3.5904
2022-09-11 02:41:30 - Epoch: 0, Step: 250/335, Avg Loss: 4.7384, Avg Regression Loss 1.0783, Avg Classification Loss: 3.6601
2022-09-11 02:41:43 - Epoch: 0, Step: 260/335, Avg Loss: 4.2065, Avg Regression Loss 1.1114, Avg Classification Loss: 3.0951
2022-09-11 02:41:49 - Epoch: 0, Step: 270/335, Avg Loss: 5.8756, Avg Regression Loss 1.6882, Avg Classification Loss: 4.1874
2022-09-11 02:41:54 - Epoch: 0, Step: 280/335, Avg Loss: 3.9843, Avg Regression Loss 0.9590, Avg Classification Loss: 3.0253
2022-09-11 02:41:58 - Epoch: 0, Step: 290/335, Avg Loss: 4.0933, Avg Regression Loss 1.0170, Avg Classification Loss: 3.0762
2022-09-11 02:42:02 - Epoch: 0, Step: 300/335, Avg Loss: 3.8073, Avg Regression Loss 1.0837, Avg Classification Loss: 2.7236
2022-09-11 02:42:06 - Epoch: 0, Step: 310/335, Avg Loss: 3.5797, Avg Regression Loss 0.8343, Avg Classification Loss: 2.7455
2022-09-11 02:42:13 - Epoch: 0, Step: 320/335, Avg Loss: 4.0300, Avg Regression Loss 1.0609, Avg Classification Loss: 2.9691
2022-09-11 02:42:18 - Epoch: 0, Step: 330/335, Avg Loss: 4.2227, Avg Regression Loss 1.0146, Avg Classification Loss: 3.2081
2022-09-11 02:42:56 - Epoch: 0, Validation Loss: nan, Validation Regression Loss nan, Validation Classification Loss: 2.6859
2022-09-11 02:42:57 - Saved model models/cups/mb1-ssd-Epoch-0-Loss-nan.pth
2022-09-11 02:43:09 - Epoch: 1, Step: 10/335, Avg Loss: 4.7528, Avg Regression Loss 1.4569, Avg Classification Loss: 3.2959
2022-09-11 02:43:14 - Epoch: 1, Step: 20/335, Avg Loss: 4.5625, Avg Regression Loss 1.3868, Avg Classification Loss: 3.1757
2022-09-11 02:43:18 - Epoch: 1, Step: 30/335, Avg Loss: 4.1727, Avg Regression Loss 0.9965, Avg Classification Loss: 3.1762
2022-09-11 02:43:22 - Epoch: 1, Step: 40/335, Avg Loss: 3.9218, Avg Regression Loss 1.0655, Avg Classification Loss: 2.8563
2022-09-11 02:43:34 - Epoch: 1, Step: 50/335, Avg Loss: 4.2946, Avg Regression Loss 1.0416, Avg Classification Loss: 3.2531
2022-09-11 02:43:39 - Epoch: 1, Step: 60/335, Avg Loss: 4.1086, Avg Regression Loss 1.1720, Avg Classification Loss: 2.9366
2022-09-11 02:43:44 - Epoch: 1, Step: 70/335, Avg Loss: 3.8122, Avg Regression Loss 0.9168, Avg Classification Loss: 2.8954
2022-09-11 02:43:48 - Epoch: 1, Step: 80/335, Avg Loss: 3.7327, Avg Regression Loss 0.8699, Avg Classification Loss: 2.8627
2022-09-11 02:43:53 - Epoch: 1, Step: 90/335, Avg Loss: 3.8755, Avg Regression Loss 0.9999, Avg Classification Loss: 2.8756
2022-09-11 02:43:57 - Epoch: 1, Step: 100/335, Avg Loss: 4.2911, Avg Regression Loss 1.1613, Avg Classification Loss: 3.1298
2022-09-11 02:44:01 - Epoch: 1, Step: 110/335, Avg Loss: 4.0683, Avg Regression Loss 0.9485, Avg Classification Loss: 3.1198
2022-09-11 02:44:08 - Epoch: 1, Step: 120/335, Avg Loss: 4.8175, Avg Regression Loss 1.3730, Avg Classification Loss: 3.4445
2022-09-11 02:44:13 - Epoch: 1, Step: 130/335, Avg Loss: 3.9986, Avg Regression Loss 0.8723, Avg Classification Loss: 3.1263
2022-09-11 02:44:22 - Epoch: 1, Step: 140/335, Avg Loss: 4.1537, Avg Regression Loss 0.9875, Avg Classification Loss: 3.1663
2022-09-11 02:44:26 - Epoch: 1, Step: 150/335, Avg Loss: 3.2616, Avg Regression Loss 0.6619, Avg Classification Loss: 2.5997
2022-09-11 02:44:31 - Epoch: 1, Step: 160/335, Avg Loss: 3.9602, Avg Regression Loss 0.9796, Avg Classification Loss: 2.9806
2022-09-11 02:44:35 - Epoch: 1, Step: 170/335, Avg Loss: 3.6410, Avg Regression Loss 0.9303, Avg Classification Loss: 2.7107
2022-09-11 02:44:39 - Epoch: 1, Step: 180/335, Avg Loss: 3.2275, Avg Regression Loss 0.6541, Avg Classification Loss: 2.5734
2022-09-11 02:44:43 - Epoch: 1, Step: 190/335, Avg Loss: 3.2455, Avg Regression Loss 0.7881, Avg Classification Loss: 2.4574
2022-09-11 02:44:51 - Epoch: 1, Step: 200/335, Avg Loss: 3.9106, Avg Regression Loss 0.8192, Avg Classification Loss: 3.0913
2022-09-11 02:44:55 - Epoch: 1, Step: 210/335, Avg Loss: 3.6226, Avg Regression Loss 0.7729, Avg Classification Loss: 2.8497
2022-09-11 02:45:00 - Epoch: 1, Step: 220/335, Avg Loss: 3.6930, Avg Regression Loss 0.8867, Avg Classification Loss: 2.8063
2022-09-11 02:45:06 - Epoch: 1, Step: 230/335, Avg Loss: 3.2695, Avg Regression Loss 0.6764, Avg Classification Loss: 2.5931
2022-09-11 02:45:10 - Epoch: 1, Step: 240/335, Avg Loss: 4.4048, Avg Regression Loss 1.0668, Avg Classification Loss: 3.3380
2022-09-11 02:45:15 - Epoch: 1, Step: 250/335, Avg Loss: 4.0364, Avg Regression Loss 0.9123, Avg Classification Loss: 3.1241
2022-09-11 02:45:20 - Epoch: 1, Step: 260/335, Avg Loss: 3.6870, Avg Regression Loss 0.8954, Avg Classification Loss: 2.7916
2022-09-11 02:45:25 - Epoch: 1, Step: 270/335, Avg Loss: 4.1630, Avg Regression Loss 1.0255, Avg Classification Loss: 3.1375
2022-09-11 02:45:29 - Epoch: 1, Step: 280/335, Avg Loss: 3.8322, Avg Regression Loss 1.0760, Avg Classification Loss: 2.7562
2022-09-11 02:45:34 - Epoch: 1, Step: 290/335, Avg Loss: 3.5010, Avg Regression Loss 0.9813, Avg Classification Loss: 2.5197
2022-09-11 02:45:45 - Epoch: 1, Step: 300/335, Avg Loss: 3.2187, Avg Regression Loss 0.7922, Avg Classification Loss: 2.4264
2022-09-11 02:45:50 - Epoch: 1, Step: 310/335, Avg Loss: 3.4653, Avg Regression Loss 0.8551, Avg Classification Loss: 2.6102
2022-09-11 02:45:56 - Epoch: 1, Step: 320/335, Avg Loss: 3.5922, Avg Regression Loss 0.9663, Avg Classification Loss: 2.6259
2022-09-11 02:46:02 - Epoch: 1, Step: 330/335, Avg Loss: 3.7291, Avg Regression Loss 0.8820, Avg Classification Loss: 2.8471
2022-09-11 02:46:40 - Epoch: 1, Validation Loss: nan, Validation Regression Loss nan, Validation Classification Loss: 2.0872
2022-09-11 02:46:41 - Saved model models/cups/mb1-ssd-Epoch-1-Loss-nan.pth
2022-09-11 02:46:46 - Epoch: 2, Step: 10/335, Avg Loss: 4.5928, Avg Regression Loss 1.3204, Avg Classification Loss: 3.2724
2022-09-11 02:46:57 - Epoch: 2, Step: 20/335, Avg Loss: 3.6015, Avg Regression Loss 1.1403, Avg Classification Loss: 2.4612
2022-09-11 02:47:02 - Epoch: 2, Step: 30/335, Avg Loss: 4.5021, Avg Regression Loss 1.2308, Avg Classification Loss: 3.2713
2022-09-11 02:47:06 - Epoch: 2, Step: 40/335, Avg Loss: 3.6274, Avg Regression Loss 0.8591, Avg Classification Loss: 2.7683
2022-09-11 02:47:10 - Epoch: 2, Step: 50/335, Avg Loss: 3.7444, Avg Regression Loss 0.9220, Avg Classification Loss: 2.8223
2022-09-11 02:47:16 - Epoch: 2, Step: 60/335, Avg Loss: 4.8939, Avg Regression Loss 1.6893, Avg Classification Loss: 3.2046
2022-09-11 02:47:21 - Epoch: 2, Step: 70/335, Avg Loss: 4.2902, Avg Regression Loss 1.1281, Avg Classification Loss: 3.1621
2022-09-11 02:47:25 - Epoch: 2, Step: 80/335, Avg Loss: 3.4214, Avg Regression Loss 1.0068, Avg Classification Loss: 2.4146
2022-09-11 02:47:30 - Epoch: 2, Step: 90/335, Avg Loss: 4.2179, Avg Regression Loss 1.1306, Avg Classification Loss: 3.0873
2022-09-11 02:47:35 - Epoch: 2, Step: 100/335, Avg Loss: 3.7106, Avg Regression Loss 0.9373, Avg Classification Loss: 2.7733
2022-09-11 02:47:39 - Epoch: 2, Step: 110/335, Avg Loss: 3.0466, Avg Regression Loss 0.6821, Avg Classification Loss: 2.3644
2022-09-11 02:47:45 - Epoch: 2, Step: 120/335, Avg Loss: 4.7590, Avg Regression Loss 1.4710, Avg Classification Loss: 3.2879
2022-09-11 02:47:51 - Epoch: 2, Step: 130/335, Avg Loss: 3.8756, Avg Regression Loss 0.9354, Avg Classification Loss: 2.9402
2022-09-11 02:47:55 - Epoch: 2, Step: 140/335, Avg Loss: 3.0483, Avg Regression Loss 0.6718, Avg Classification Loss: 2.3764
2022-09-11 02:48:01 - Epoch: 2, Step: 150/335, Avg Loss: 3.3646, Avg Regression Loss 0.8444, Avg Classification Loss: 2.5202
2022-09-11 02:48:05 - Epoch: 2, Step: 160/335, Avg Loss: 3.3813, Avg Regression Loss 0.8697, Avg Classification Loss: 2.5116
2022-09-11 02:48:09 - Epoch: 2, Step: 170/335, Avg Loss: 2.9238, Avg Regression Loss 0.7592, Avg Classification Loss: 2.1646
2022-09-11 02:48:14 - Epoch: 2, Step: 180/335, Avg Loss: 2.9975, Avg Regression Loss 0.8017, Avg Classification Loss: 2.1959
2022-09-11 02:48:19 - Epoch: 2, Step: 190/335, Avg Loss: 2.6866, Avg Regression Loss 0.6453, Avg Classification Loss: 2.0413
2022-09-11 02:48:23 - Epoch: 2, Step: 200/335, Avg Loss: 2.9810, Avg Regression Loss 0.8142, Avg Classification Loss: 2.1668
2022-09-11 02:48:28 - Epoch: 2, Step: 210/335, Avg Loss: 2.8310, Avg Regression Loss 0.4889, Avg Classification Loss: 2.3421
2022-09-11 02:48:33 - Epoch: 2, Step: 220/335, Avg Loss: 2.9918, Avg Regression Loss 0.7754, Avg Classification Loss: 2.2164
2022-09-11 02:48:37 - Epoch: 2, Step: 230/335, Avg Loss: 3.3247, Avg Regression Loss 0.9024, Avg Classification Loss: 2.4223
2022-09-11 02:48:41 - Epoch: 2, Step: 240/335, Avg Loss: 3.6176, Avg Regression Loss 0.9046, Avg Classification Loss: 2.7131
2022-09-11 02:48:45 - Epoch: 2, Step: 250/335, Avg Loss: 3.6077, Avg Regression Loss 0.8150, Avg Classification Loss: 2.7926
2022-09-11 02:48:50 - Epoch: 2, Step: 260/335, Avg Loss: 3.1581, Avg Regression Loss 0.7109, Avg Classification Loss: 2.4472
2022-09-11 02:48:56 - Epoch: 2, Step: 270/335, Avg Loss: 3.9875, Avg Regression Loss 1.0965, Avg Classification Loss: 2.8911
2022-09-11 02:49:00 - Epoch: 2, Step: 280/335, Avg Loss: 2.9721, Avg Regression Loss 0.6941, Avg Classification Loss: 2.2780
2022-09-11 02:49:05 - Epoch: 2, Step: 290/335, Avg Loss: 2.9225, Avg Regression Loss 0.7209, Avg Classification Loss: 2.2016
2022-09-11 02:49:09 - Epoch: 2, Step: 300/335, Avg Loss: 2.5306, Avg Regression Loss 0.5464, Avg Classification Loss: 1.9843
2022-09-11 02:49:14 - Epoch: 2, Step: 310/335, Avg Loss: 2.9787, Avg Regression Loss 0.8526, Avg Classification Loss: 2.1262
2022-09-11 02:49:19 - Epoch: 2, Step: 320/335, Avg Loss: 3.0368, Avg Regression Loss 0.7097, Avg Classification Loss: 2.3271
2022-09-11 02:49:23 - Epoch: 2, Step: 330/335, Avg Loss: 2.8131, Avg Regression Loss 0.6010, Avg Classification Loss: 2.2120
2022-09-11 02:49:58 - Epoch: 2, Validation Loss: nan, Validation Regression Loss nan, Validation Classification Loss: 1.6630
2022-09-11 02:49:58 - Saved model models/cups/mb1-ssd-Epoch-2-Loss-nan.pth
2022-09-11 02:49:58 - Task done, exiting program.
root@gvcjn-desktop:/jetson-inference/python/training/detection/ssd# python3 onnx_export.py --input=models/cups/mb1-ssd-Epoch-0-Loss-nan.pth --labels=models/cups/labels.txt
Namespace(batch_size=1, height=300, input=‘models/cups/mb1-ssd-Epoch-0-Loss-nan.pth’, labels=‘models/cups/labels.txt’, model_dir=‘’, net=‘ssd-mobilenet’, output=‘’, width=300)
running on device cuda:0
creating network: ssd-mobilenet
num classes: 5
loading checkpoint: models/cups/mb1-ssd-Epoch-0-Loss-nan.pth
exporting model to ONNX…
graph(%input_0 : Float(1, 3, 300, 300, strides=[270000, 90000, 300, 1], requires_grad=0, device=cuda:0),
%extras.0.0.weight : Float(256, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=1, device=cuda:0),
%extras.0.0.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0),
%extras.0.2.weight : Float(512, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0),
%extras.0.2.bias : Float(512, strides=[1], requires_grad=1, device=cuda:0),
%extras.1.0.weight : Float(128, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=1, device=cuda:0),
%extras.1.0.bias : Float(128, strides=[1], requires_grad=1, device=cuda:0),
%extras.1.2.weight : Float(256, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0),
%extras.1.2.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0),
%extras.2.0.weight : Float(128, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=1, device=cuda:0),
%extras.2.0.bias : Float(128, strides=[1], requires_grad=1, device=cuda:0),
%extras.2.2.weight : Float(256, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0),
%extras.2.2.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0),
%extras.3.0.weight : Float(128, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=1, device=cuda:0),
%extras.3.0.bias : Float(128, strides=[1], requires_grad=1, device=cuda:0),
%extras.3.2.weight : Float(256, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0),
%extras.3.2.bias : Float(256, strides=[1], requires_grad=1, device=cuda:0),
%classification_headers.0.weight : Float(30, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0),
%classification_headers.0.bias : Float(30, strides=[1], requires_grad=1, device=cuda:0),
%classification_headers.1.weight : Float(30, 1024, 3, 3, strides=[9216, 9, 3, 1], requires_grad=1, device=cuda:0),
%classification_headers.1.bias : Float(30, strides=[1], requires_grad=1, device=cuda:0),
%classification_headers.2.weight : Float(30, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0),
%classification_headers.2.bias : Float(30, strides=[1], requires_grad=1, device=cuda:0),
%classification_headers.3.weight : Float(30, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0),
%classification_headers.3.bias : Float(30, strides=[1], requires_grad=1, device=cuda:0),
%classification_headers.4.weight : Float(30, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0),
%classification_headers.4.bias : Float(30, strides=[1], requires_grad=1, device=cuda:0),
%classification_headers.5.weight : Float(30, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0),
%classification_headers.5.bias : Float(30, strides=[1], requires_grad=1, device=cuda:0),
%regression_headers.0.weight : Float(24, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0),
%regression_headers.0.bias : Float(24, strides=[1], requires_grad=1, device=cuda:0),
%regression_headers.1.weight : Float(24, 1024, 3, 3, strides=[9216, 9, 3, 1], requires_grad=1, device=cuda:0),
%regression_headers.1.bias : Float(24, strides=[1], requires_grad=1, device=cuda:0),
%regression_headers.2.weight : Float(24, 512, 3, 3, strides=[4608, 9, 3, 1], requires_grad=1, device=cuda:0),
%regression_headers.2.bias : Float(24, strides=[1], requires_grad=1, device=cuda:0),
%regression_headers.3.weight : Float(24, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0),
%regression_headers.3.bias : Float(24, strides=[1], requires_grad=1, device=cuda:0),
%regression_headers.4.weight : Float(24, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0),
%regression_headers.4.bias : Float(24, strides=[1], requires_grad=1, device=cuda:0),
%regression_headers.5.weight : Float(24, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0),
%regression_headers.5.bias : Float(24, strides=[1], requires_grad=1, device=cuda:0),
%451 : Float(32, 3, 3, 3, strides=[27, 9, 3, 1], requires_grad=0, device=cuda:0),
%452 : Float(32, strides=[1], requires_grad=0, device=cuda:0),
%454 : Float(32, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%455 : Float(32, strides=[1], requires_grad=0, device=cuda:0),
%457 : Float(64, 32, 1, 1, strides=[32, 1, 1, 1], requires_grad=0, device=cuda:0),
%458 : Float(64, strides=[1], requires_grad=0, device=cuda:0),
%460 : Float(64, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%461 : Float(64, strides=[1], requires_grad=0, device=cuda:0),
%463 : Float(128, 64, 1, 1, strides=[64, 1, 1, 1], requires_grad=0, device=cuda:0),
%464 : Float(128, strides=[1], requires_grad=0, device=cuda:0),
%466 : Float(128, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%467 : Float(128, strides=[1], requires_grad=0, device=cuda:0),
%469 : Float(128, 128, 1, 1, strides=[128, 1, 1, 1], requires_grad=0, device=cuda:0),
%470 : Float(128, strides=[1], requires_grad=0, device=cuda:0),
%472 : Float(128, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%473 : Float(128, strides=[1], requires_grad=0, device=cuda:0),
%475 : Float(256, 128, 1, 1, strides=[128, 1, 1, 1], requires_grad=0, device=cuda:0),
%476 : Float(256, strides=[1], requires_grad=0, device=cuda:0),
%478 : Float(256, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%479 : Float(256, strides=[1], requires_grad=0, device=cuda:0),
%481 : Float(256, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0),
%482 : Float(256, strides=[1], requires_grad=0, device=cuda:0),
%484 : Float(256, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%485 : Float(256, strides=[1], requires_grad=0, device=cuda:0),
%487 : Float(512, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0),
%488 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%490 : Float(512, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%491 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%493 : Float(512, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0),
%494 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%496 : Float(512, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%497 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%499 : Float(512, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0),
%500 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%502 : Float(512, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%503 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%505 : Float(512, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0),
%506 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%508 : Float(512, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%509 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%511 : Float(512, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0),
%512 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%514 : Float(512, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%515 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%517 : Float(512, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0),
%518 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%520 : Float(512, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%521 : Float(512, strides=[1], requires_grad=0, device=cuda:0),
%523 : Float(1024, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0),
%524 : Float(1024, strides=[1], requires_grad=0, device=cuda:0),
%526 : Float(1024, 1, 3, 3, strides=[9, 9, 3, 1], requires_grad=0, device=cuda:0),
%527 : Float(1024, strides=[1], requires_grad=0, device=cuda:0),
%529 : Float(1024, 1024, 1, 1, strides=[1024, 1, 1, 1], requires_grad=0, device=cuda:0),
%530 : Float(1024, strides=[1], requires_grad=0, device=cuda:0),
%534 : Long(3, strides=[1], requires_grad=0, device=cpu),
%538 : Long(3, strides=[1], requires_grad=0, device=cpu),
%542 : Long(3, strides=[1], requires_grad=0, device=cpu),
%546 : Long(3, strides=[1], requires_grad=0, device=cpu),
%550 : Long(3, strides=[1], requires_grad=0, device=cpu),
%554 : Long(3, strides=[1], requires_grad=0, device=cpu),
%558 : Long(3, strides=[1], requires_grad=0, device=cpu),
%562 : Long(3, strides=[1], requires_grad=0, device=cpu),
%566 : Long(3, strides=[1], requires_grad=0, device=cpu),
%570 : Long(3, strides=[1], requires_grad=0, device=cpu),
%574 : Long(3, strides=[1], requires_grad=0, device=cpu),
%578 : Long(3, strides=[1], requires_grad=0, device=cpu),
%579 : Float(requires_grad=0, device=cpu),
%580 : Float(requires_grad=0, device=cpu)):
%450 : Float(1, 32, 150, 150, strides=[720000, 22500, 150, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%input_0, %451, %452)
%205 : Float(1, 32, 150, 150, strides=[720000, 22500, 150, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%450) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%453 : Float(1, 32, 150, 150, strides=[720000, 22500, 150, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=32, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%205, %454, %455)
%208 : Float(1, 32, 150, 150, strides=[720000, 22500, 150, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%453) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%456 : Float(1, 64, 150, 150, strides=[1440000, 22500, 150, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%208, %457, %458)
%211 : Float(1, 64, 150, 150, strides=[1440000, 22500, 150, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%456) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%459 : Float(1, 64, 75, 75, strides=[360000, 5625, 75, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=64, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%211, %460, %461)
%214 : Float(1, 64, 75, 75, strides=[360000, 5625, 75, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%459) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%462 : Float(1, 128, 75, 75, strides=[720000, 5625, 75, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%214, %463, %464)
%217 : Float(1, 128, 75, 75, strides=[720000, 5625, 75, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%462) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%465 : Float(1, 128, 75, 75, strides=[720000, 5625, 75, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=128, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%217, %466, %467)
%220 : Float(1, 128, 75, 75, strides=[720000, 5625, 75, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%465) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%468 : Float(1, 128, 75, 75, strides=[720000, 5625, 75, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%220, %469, %470)
%223 : Float(1, 128, 75, 75, strides=[720000, 5625, 75, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%468) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%471 : Float(1, 128, 38, 38, strides=[184832, 1444, 38, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=128, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%223, %472, %473)
%226 : Float(1, 128, 38, 38, strides=[184832, 1444, 38, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%471) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%474 : Float(1, 256, 38, 38, strides=[369664, 1444, 38, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%226, %475, %476)
%229 : Float(1, 256, 38, 38, strides=[369664, 1444, 38, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%474) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%477 : Float(1, 256, 38, 38, strides=[369664, 1444, 38, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=256, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%229, %478, %479)
%232 : Float(1, 256, 38, 38, strides=[369664, 1444, 38, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%477) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%480 : Float(1, 256, 38, 38, strides=[369664, 1444, 38, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%232, %481, %482)
%235 : Float(1, 256, 38, 38, strides=[369664, 1444, 38, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%480) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%483 : Float(1, 256, 19, 19, strides=[92416, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=256, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%235, %484, %485)
%238 : Float(1, 256, 19, 19, strides=[92416, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%483) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%486 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%238, %487, %488)
%241 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%486) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%489 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=512, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%241, %490, %491)
%244 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%489) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%492 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%244, %493, %494)
%247 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%492) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%495 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=512, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%247, %496, %497)
%250 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%495) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%498 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%250, %499, %500)
%253 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%498) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%501 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=512, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%253, %502, %503)
%256 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%501) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%504 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%256, %505, %506)
%259 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%504) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%507 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=512, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%259, %508, %509)
%262 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%507) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%510 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%262, %511, %512)
%265 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%510) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%513 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=512, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%265, %514, %515)
%268 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%513) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%516 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%268, %517, %518)
%271 : Float(1, 512, 19, 19, strides=[184832, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%516) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%272 : Float(1, 30, 19, 19, strides=[10830, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%271, %classification_headers.0.weight, %classification_headers.0.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%273 : Float(1, 19, 19, 30, strides=[10830, 570, 30, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:102:0
%281 : Float(1, 2166, 5, strides=[10830, 5, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%273, %534) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:103:0
%282 : Float(1, 24, 19, 19, strides=[8664, 361, 19, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%271, %regression_headers.0.weight, %regression_headers.0.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%283 : Float(1, 19, 19, 24, strides=[8664, 456, 24, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:106:0
%291 : Float(1, 2166, 4, strides=[8664, 4, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%283, %538) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:107:0
%519 : Float(1, 512, 10, 10, strides=[51200, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=512, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%271, %520, %521)
%294 : Float(1, 512, 10, 10, strides=[51200, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%519) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%522 : Float(1, 1024, 10, 10, strides=[102400, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%294, %523, %524)
%297 : Float(1, 1024, 10, 10, strides=[102400, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%522) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%525 : Float(1, 1024, 10, 10, strides=[102400, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1024, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%297, %526, %527)
%300 : Float(1, 1024, 10, 10, strides=[102400, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%525) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%528 : Float(1, 1024, 10, 10, strides=[102400, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%300, %529, %530)
%303 : Float(1, 1024, 10, 10, strides=[102400, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%528) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1297:0
%304 : Float(1, 30, 10, 10, strides=[3000, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%303, %classification_headers.1.weight, %classification_headers.1.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%305 : Float(1, 10, 10, 30, strides=[3000, 300, 30, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:102:0
%313 : Float(1, 600, 5, strides=[3000, 5, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%305, %542) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:103:0
%314 : Float(1, 24, 10, 10, strides=[2400, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%303, %regression_headers.1.weight, %regression_headers.1.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%315 : Float(1, 10, 10, 24, strides=[2400, 240, 24, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:106:0
%323 : Float(1, 600, 4, strides=[2400, 4, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%315, %546) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:107:0
%324 : Float(1, 256, 10, 10, strides=[25600, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%303, %extras.0.0.weight, %extras.0.0.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%325 : Float(1, 256, 10, 10, strides=[25600, 100, 10, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%324) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1299:0
%326 : Float(1, 512, 5, 5, strides=[12800, 25, 5, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%325, %extras.0.2.weight, %extras.0.2.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%327 : Float(1, 512, 5, 5, strides=[12800, 25, 5, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%326) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1299:0
%328 : Float(1, 30, 5, 5, strides=[750, 25, 5, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%327, %classification_headers.2.weight, %classification_headers.2.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%329 : Float(1, 5, 5, 30, strides=[750, 150, 30, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:102:0
%337 : Float(1, 150, 5, strides=[750, 5, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%329, %550) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:103:0
%338 : Float(1, 24, 5, 5, strides=[600, 25, 5, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%327, %regression_headers.2.weight, %regression_headers.2.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%339 : Float(1, 5, 5, 24, strides=[600, 120, 24, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:106:0
%347 : Float(1, 150, 4, strides=[600, 4, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%339, %554) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:107:0
%348 : Float(1, 128, 5, 5, strides=[3200, 25, 5, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%327, %extras.1.0.weight, %extras.1.0.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%349 : Float(1, 128, 5, 5, strides=[3200, 25, 5, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%348) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1299:0
%350 : Float(1, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%349, %extras.1.2.weight, %extras.1.2.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%351 : Float(1, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%350) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1299:0
%352 : Float(1, 30, 3, 3, strides=[270, 9, 3, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%351, %classification_headers.3.weight, %classification_headers.3.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%353 : Float(1, 3, 3, 30, strides=[270, 90, 30, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:102:0
%361 : Float(1, 54, 5, strides=[270, 5, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%353, %558) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:103:0
%362 : Float(1, 24, 3, 3, strides=[216, 9, 3, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%351, %regression_headers.3.weight, %regression_headers.3.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%363 : Float(1, 3, 3, 24, strides=[216, 72, 24, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:106:0
%371 : Float(1, 54, 4, strides=[216, 4, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%363, %562) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:107:0
%372 : Float(1, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%351, %extras.2.0.weight, %extras.2.0.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%373 : Float(1, 128, 3, 3, strides=[1152, 9, 3, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%372) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1299:0
%374 : Float(1, 256, 2, 2, strides=[1024, 4, 2, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%373, %extras.2.2.weight, %extras.2.2.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%375 : Float(1, 256, 2, 2, strides=[1024, 4, 2, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%374) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1299:0
%376 : Float(1, 30, 2, 2, strides=[120, 4, 2, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%375, %classification_headers.4.weight, %classification_headers.4.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%377 : Float(1, 2, 2, 30, strides=[120, 60, 30, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:102:0
%385 : Float(1, 24, 5, strides=[120, 5, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%377, %566) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:103:0
%386 : Float(1, 24, 2, 2, strides=[96, 4, 2, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%375, %regression_headers.4.weight, %regression_headers.4.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%387 : Float(1, 2, 2, 24, strides=[96, 48, 24, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:106:0
%395 : Float(1, 24, 4, strides=[96, 4, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%387, %570) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:107:0
%396 : Float(1, 128, 2, 2, strides=[512, 4, 2, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[1, 1], pads=[0, 0, 0, 0], strides=[1, 1]](%375, %extras.3.0.weight, %extras.3.0.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%397 : Float(1, 128, 2, 2, strides=[512, 4, 2, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%396) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1299:0
%398 : Float(1, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2]](%397, %extras.3.2.weight, %extras.3.2.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%399 : Float(1, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=1, device=cuda:0) = onnx::Relu(%398) # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1299:0
%400 : Float(1, 30, 1, 1, strides=[30, 1, 1, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%399, %classification_headers.5.weight, %classification_headers.5.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%401 : Float(1, 1, 1, 30, strides=[30, 1, 1, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:102:0
%409 : Float(1, 6, 5, strides=[30, 5, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%401, %574) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:103:0
%410 : Float(1, 24, 1, 1, strides=[24, 1, 1, 1], requires_grad=1, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%399, %regression_headers.5.weight, %regression_headers.5.bias) # /usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py:443:0
%411 : Float(1, 1, 1, 24, strides=[24, 1, 1, 1], requires_grad=1, device=cuda:0) = onnx::Transposeperm=[0, 2, 3, 1] # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:106:0
%419 : Float(1, 6, 4, strides=[24, 4, 1], requires_grad=1, device=cuda:0) = onnx::Reshape(%411, %578) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:107:0
%420 : Float(1, 3000, 5, strides=[15000, 5, 1], requires_grad=1, device=cuda:0) = onnx::Concat[axis=1](%281, %313, %337, %361, %385, %409) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:87:0
%421 : Float(1, 3000, 4, strides=[12000, 4, 1], requires_grad=1, device=cuda:0) = onnx::Concat[axis=1](%291, %323, %347, %371, %395, %419) # /jetson-inference/python/training/detection/ssd/vision/ssd/ssd.py:88:0
%scores : Float(1, 3000, 5, strides=[15000, 5, 1], requires_grad=1, device=cuda:0) = onnx::Softmaxaxis=2 # /usr/local/lib/python3.6/dist-packages/torch/nn/functional.py:1680:0
%423 : Float(1, 3000, 2, strides=[12000, 4, 1], requires_grad=1, device=cuda:0) = onnx::Sliceaxes=[2], ends=[2], starts=[0] # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:104:0
%424 : Float(requires_grad=0, device=cpu) = onnx::Constantvalue={0.1}
%425 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Mul(%423, %424)
%426 : Float(1, 3000, 2, strides=[12000, 4, 1], requires_grad=0, device=cuda:0) = onnx::Constantvalue=
%427 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Mul(%425, %426) # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:104:0
%428 : Float(1, 3000, 2, strides=[12000, 4, 1], requires_grad=0, device=cuda:0) = onnx::Constantvalue=
%429 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Add(%427, %428) # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:104:0
%430 : Float(1, 3000, 2, strides=[12000, 4, 1], requires_grad=1, device=cuda:0) = onnx::Sliceaxes=[2], ends=[9223372036854775807], starts=[2] # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:105:0
%431 : Float(requires_grad=0, device=cpu) = onnx::Constantvalue={0.2}
%432 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Mul(%430, %431)
%433 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Exp(%432) # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:105:0
%434 : Float(1, 3000, 2, strides=[12000, 4, 1], requires_grad=0, device=cuda:0) = onnx::Constantvalue=
%435 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Mul(%433, %434) # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:105:0
%436 : Float(1, 3000, 4, strides=[12000, 4, 1], requires_grad=1, device=cuda:0) = onnx::Concat[axis=2](%429, %435) # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:106:0
%437 : Float(1, 3000, 2, strides=[12000, 4, 1], requires_grad=1, device=cuda:0) = onnx::Sliceaxes=[2], ends=[2], starts=[0] # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:208:0
%438 : Float(1, 3000, 2, strides=[12000, 4, 1], requires_grad=1, device=cuda:0) = onnx::Sliceaxes=[2], ends=[9223372036854775807], starts=[2] # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:208:0
%441 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Div(%438, %579)
%442 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Sub(%437, %441) # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:208:0
%443 : Float(1, 3000, 2, strides=[12000, 4, 1], requires_grad=1, device=cuda:0) = onnx::Sliceaxes=[2], ends=[2], starts=[0] # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:209:0
%444 : Float(1, 3000, 2, strides=[12000, 4, 1], requires_grad=1, device=cuda:0) = onnx::Sliceaxes=[2], ends=[9223372036854775807], starts=[2] # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:209:0
%447 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Div(%444, %580)
%448 : Float(1, 3000, 2, strides=[6000, 2, 1], requires_grad=1, device=cuda:0) = onnx::Add(%443, %447) # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:209:0
%boxes : Float(1, 3000, 4, strides=[12000, 4, 1], requires_grad=1, device=cuda:0) = onnx::Concat[axis=2](%442, %448) # /jetson-inference/python/training/detection/ssd/vision/utils/box_utils.py:209:0
return (%scores, %boxes)