Testing accuracy is too low on ResNET 18 pre tarined model

I am using Dusty-nv Jetson-inference. I followed Walhtrough to train the classification of images.
I am training tomato ripening stages. I trained 2 classes the most extreme pure green and pure red. On testing, Results showed only one class and classify all images as pure green ( Pure green 15 images as pure green and pure red 15 test images as pure green again). How to train my data set. I trained up to 35 Epochs.

The other case is that I have 6 classes from pure green to pure red and I trained them to 100 and then 200 epochs. but accuracy is only 20%.

Please identify the issue, and what could be wrong?

Hi,

Did you follow the tutorial below?
If yes, could you share the training log that contains loss and accuracy with us?

Thanks.

Dear, Many thanks for your reply.
Yes, I have followed the exact tutorial as I am doing transfer learning.

I am sharing data for 6 classes, from pure green to Red.
Following is epoch no 21st.

Epoch: [20][  0/900]  Time 151.736 (151.736)  Data 14.413 (14.413)  Loss 1.9510e+00 (1.9510e+00)  Acc@1   0.00 (  0.00)  Acc@5 100.00 (100.00)
Epoch: [20][ 10/900]  Time  0.159 (14.526)  Data  0.000 ( 1.766)  Loss 2.0621e+00 (2.0905e+00)  Acc@1   0.00 (  0.00)  Acc@5 100.00 ( 90.91)
Epoch: [20][ 20/900]  Time  0.157 ( 7.791)  Data  0.000 ( 1.039)  Loss 1.0253e+00 (1.9111e+00)  Acc@1 100.00 ( 19.05)  Acc@5 100.00 ( 95.24)
Epoch: [20][ 30/900]  Time  0.158 ( 5.330)  Data  0.000 ( 0.708)  Loss 1.5839e+00 (1.9153e+00)  Acc@1   0.00 ( 16.13)  Acc@5 100.00 ( 93.55)
Epoch: [20][ 40/900]  Time  0.159 ( 4.069)  Data  0.000 ( 0.537)  Loss 2.4524e+00 (2.0084e+00)  Acc@1   0.00 ( 17.07)  Acc@5 100.00 ( 87.80)
Epoch: [20][ 50/900]  Time  0.158 ( 3.302)  Data  0.001 ( 0.434)  Loss 2.1248e+00 (2.0258e+00)  Acc@1   0.00 ( 17.65)  Acc@5 100.00 ( 90.20)
Epoch: [20][ 60/900]  Time  0.161 ( 2.787)  Data  0.001 ( 0.364)  Loss 1.1415e+00 (1.9788e+00)  Acc@1 100.00 ( 19.67)  Acc@5 100.00 ( 91.80)
Epoch: [20][ 70/900]  Time  0.160 ( 2.417)  Data  0.000 ( 0.314)  Loss 1.7265e+00 (2.0525e+00)  Acc@1   0.00 ( 18.31)  Acc@5 100.00 ( 88.73)
Epoch: [20][ 80/900]  Time  0.160 ( 2.138)  Data  0.000 ( 0.276)  Loss 2.1617e+00 (2.0397e+00)  Acc@1   0.00 ( 17.28)  Acc@5 100.00 ( 87.65)
Epoch: [20][ 90/900]  Time  0.158 ( 1.921)  Data  0.000 ( 0.246)  Loss 1.3998e+00 (1.9995e+00)  Acc@1   0.00 ( 17.58)  Acc@5 100.00 ( 89.01)
Epoch: [20][100/900]  Time  0.159 ( 1.746)  Data  0.001 ( 0.223)  Loss 1.5428e+00 (1.9539e+00)  Acc@1   0.00 ( 19.80)  Acc@5 100.00 ( 90.10)
Epoch: [20][110/900]  Time  0.157 ( 1.603)  Data  0.001 ( 0.203)  Loss 3.0696e+00 (2.0262e+00)  Acc@1   0.00 ( 18.92)  Acc@5   0.00 ( 88.29)
Epoch: [20][120/900]  Time  0.158 ( 1.484)  Data  0.000 ( 0.187)  Loss 2.6331e+00 (2.0204e+00)  Acc@1   0.00 ( 18.18)  Acc@5 100.00 ( 88.43)
Epoch: [20][130/900]  Time  0.161 ( 1.383)  Data  0.000 ( 0.174)  Loss 1.8139e+00 (2.0167e+00)  Acc@1   0.00 ( 19.08)  Acc@5 100.00 ( 87.79)
Epoch: [20][140/900]  Time  0.161 ( 1.296)  Data  0.001 ( 0.162)  Loss 2.1644e+00 (2.0445e+00)  Acc@1   0.00 ( 18.44)  Acc@5   0.00 ( 85.11)
Epoch: [20][150/900]  Time  0.158 ( 1.221)  Data  0.000 ( 0.152)  Loss 2.8062e+00 (2.0470e+00)  Acc@1   0.00 ( 17.88)  Acc@5   0.00 ( 84.11)
Epoch: [20][160/900]  Time  0.156 ( 1.155)  Data  0.001 ( 0.143)  Loss 1.7622e+00 (2.0375e+00)  Acc@1   0.00 ( 18.01)  Acc@5 100.00 ( 84.47)
Epoch: [20][170/900]  Time  0.159 ( 1.097)  Data  0.000 ( 0.135)  Loss 3.6050e-01 (2.0003e+00)  Acc@1 100.00 ( 20.47)  Acc@5 100.00 ( 84.80)
Epoch: [20][180/900]  Time  0.158 ( 1.045)  Data  0.000 ( 0.128)  Loss 1.6848e+00 (2.0566e+00)  Acc@1   0.00 ( 19.34)  Acc@5 100.00 ( 83.43)
Epoch: [20][190/900]  Time  0.160 ( 0.998)  Data  0.000 ( 0.121)  Loss 1.9842e+00 (2.0412e+00)  Acc@1   0.00 ( 19.90)  Acc@5 100.00 ( 83.77)
Epoch: [20][200/900]  Time  0.156 ( 0.957)  Data  0.000 ( 0.116)  Loss 1.4973e+00 (2.0434e+00)  Acc@1   0.00 ( 19.90)  Acc@5 100.00 ( 84.08)
Epoch: [20][210/900]  Time  0.158 ( 0.919)  Data  0.001 ( 0.111)  Loss 2.1533e+00 (2.0486e+00)  Acc@1   0.00 ( 19.43)  Acc@5 100.00 ( 84.36)
Epoch: [20][220/900]  Time  0.158 ( 0.884)  Data  0.000 ( 0.106)  Loss 1.7518e+00 (2.0428e+00)  Acc@1   0.00 ( 19.46)  Acc@5 100.00 ( 84.62)
Epoch: [20][230/900]  Time  0.158 ( 0.853)  Data  0.001 ( 0.102)  Loss 1.8696e+00 (2.0310e+00)  Acc@1   0.00 ( 20.78)  Acc@5 100.00 ( 84.42)
Epoch: [20][240/900]  Time  0.156 ( 0.824)  Data  0.001 ( 0.098)  Loss 1.0003e+00 (2.0360e+00)  Acc@1 100.00 ( 21.16)  Acc@5 100.00 ( 84.23)
Epoch: [20][250/900]  Time  0.159 ( 0.798)  Data  0.000 ( 0.094)  Loss 2.3924e+00 (2.0312e+00)  Acc@1   0.00 ( 21.12)  Acc@5   0.00 ( 83.67)
Epoch: [20][260/900]  Time  0.148 ( 0.773)  Data  0.000 ( 0.091)  Loss 1.6305e+00 (2.0256e+00)  Acc@1   0.00 ( 21.46)  Acc@5 100.00 ( 83.91)
Epoch: [20][270/900]  Time  0.156 ( 0.751)  Data  0.001 ( 0.088)  Loss 2.1856e+00 (2.0292e+00)  Acc@1   0.00 ( 21.03)  Acc@5   0.00 ( 82.66)
Epoch: [20][280/900]  Time  0.159 ( 0.730)  Data  0.001 ( 0.085)  Loss 2.7033e+00 (2.0430e+00)  Acc@1   0.00 ( 20.28)  Acc@5   0.00 ( 81.49)
Epoch: [20][290/900]  Time  0.159 ( 0.710)  Data  0.000 ( 0.082)  Loss 1.5022e+00 (2.0399e+00)  Acc@1   0.00 ( 20.27)  Acc@5 100.00 ( 81.10)
Epoch: [20][300/900]  Time  0.159 ( 0.692)  Data  0.001 ( 0.080)  Loss 2.3162e+00 (2.0365e+00)  Acc@1   0.00 ( 20.60)  Acc@5 100.00 ( 80.73)
Epoch: [20][310/900]  Time  0.160 ( 0.675)  Data  0.000 ( 0.078)  Loss 3.3808e+00 (2.0352e+00)  Acc@1   0.00 ( 20.90)  Acc@5   0.00 ( 80.71)
Epoch: [20][320/900]  Time  0.158 ( 0.659)  Data  0.001 ( 0.075)  Loss 1.6032e+00 (2.0371e+00)  Acc@1   0.00 ( 20.56)  Acc@5 100.00 ( 80.69)
Epoch: [20][330/900]  Time  0.157 ( 0.643)  Data  0.000 ( 0.073)  Loss 1.1670e+00 (2.0275e+00)  Acc@1   0.00 ( 20.24)  Acc@5 100.00 ( 81.27)
Epoch: [20][340/900]  Time  0.158 ( 0.629)  Data  0.001 ( 0.071)  Loss 6.7029e-01 (2.0336e+00)  Acc@1 100.00 ( 20.53)  Acc@5 100.00 ( 81.52)
Epoch: [20][350/900]  Time  0.159 ( 0.616)  Data  0.001 ( 0.070)  Loss 2.3698e+00 (2.0486e+00)  Acc@1   0.00 ( 19.94)  Acc@5 100.00 ( 80.63)
Epoch: [20][360/900]  Time  0.157 ( 0.603)  Data  0.000 ( 0.068)  Loss 2.1335e+00 (2.0412e+00)  Acc@1   0.00 ( 20.50)  Acc@5 100.00 ( 80.61)
Epoch: [20][370/900]  Time  0.160 ( 0.591)  Data  0.001 ( 0.066)  Loss 1.2511e+00 (2.0331e+00)  Acc@1 100.00 ( 21.02)  Acc@5 100.00 ( 80.86)
Epoch: [20][380/900]  Time  0.157 ( 0.580)  Data  0.000 ( 0.065)  Loss 3.0436e+00 (2.0418e+00)  Acc@1   0.00 ( 20.73)  Acc@5   0.00 ( 80.58)
Epoch: [20][390/900]  Time  0.159 ( 0.569)  Data  0.000 ( 0.063)  Loss 1.3161e+00 (2.0407e+00)  Acc@1 100.00 ( 20.72)  Acc@5 100.00 ( 81.07)
Epoch: [20][400/900]  Time  0.159 ( 0.559)  Data  0.000 ( 0.062)  Loss 2.5490e+00 (2.0370e+00)  Acc@1   0.00 ( 20.95)  Acc@5 100.00 ( 81.30)
Epoch: [20][410/900]  Time  0.157 ( 0.549)  Data  0.001 ( 0.061)  Loss 1.5901e+00 (2.0384e+00)  Acc@1   0.00 ( 20.92)  Acc@5 100.00 ( 81.27)
Epoch: [20][420/900]  Time  0.159 ( 0.540)  Data  0.000 ( 0.059)  Loss 1.7302e+00 (2.0333e+00)  Acc@1   0.00 ( 21.14)  Acc@5 100.00 ( 81.24)
Epoch: [20][430/900]  Time  0.158 ( 0.531)  Data  0.000 ( 0.058)  Loss 2.1498e+00 (2.0323e+00)  Acc@1   0.00 ( 20.88)  Acc@5 100.00 ( 81.21)
Epoch: [20][440/900]  Time  0.158 ( 0.523)  Data  0.001 ( 0.057)  Loss 1.7591e+00 (2.0276e+00)  Acc@1   0.00 ( 20.86)  Acc@5 100.00 ( 81.63)
Epoch: [20][450/900]  Time  0.157 ( 0.515)  Data  0.000 ( 0.056)  Loss 1.7298e+00 (2.0251e+00)  Acc@1   0.00 ( 20.84)  Acc@5 100.00 ( 82.04)
Epoch: [20][460/900]  Time  0.160 ( 0.507)  Data  0.001 ( 0.055)  Loss 2.7736e+00 (2.0277e+00)  Acc@1   0.00 ( 20.61)  Acc@5 100.00 ( 82.21)
Epoch: [20][470/900]  Time  0.162 ( 0.499)  Data  0.000 ( 0.054)  Loss 1.2765e+00 (2.0307e+00)  Acc@1 100.00 ( 20.59)  Acc@5 100.00 ( 81.95)
Epoch: [20][480/900]  Time  0.159 ( 0.492)  Data  0.000 ( 0.053)  Loss 2.0055e+00 (2.0271e+00)  Acc@1   0.00 ( 20.37)  Acc@5 100.00 ( 82.33)
Epoch: [20][490/900]  Time  0.159 ( 0.486)  Data  0.001 ( 0.052)  Loss 3.1931e+00 (2.0320e+00)  Acc@1   0.00 ( 20.37)  Acc@5   0.00 ( 82.08)
Epoch: [20][500/900]  Time  0.160 ( 0.479)  Data  0.000 ( 0.051)  Loss 2.2306e+00 (2.0368e+00)  Acc@1   0.00 ( 20.36)  Acc@5 100.00 ( 81.84)
Epoch: [20][510/900]  Time  0.157 ( 0.473)  Data  0.001 ( 0.050)  Loss 2.0753e+00 (2.0380e+00)  Acc@1   0.00 ( 20.16)  Acc@5 100.00 ( 82.00)
Epoch: [20][520/900]  Time  0.158 ( 0.467)  Data  0.000 ( 0.049)  Loss 1.6929e+00 (2.0398e+00)  Acc@1   0.00 ( 19.96)  Acc@5 100.00 ( 82.15)
Epoch: [20][530/900]  Time  0.157 ( 0.461)  Data  0.001 ( 0.049)  Loss 1.6216e+00 (2.0457e+00)  Acc@1   0.00 ( 19.59)  Acc@5 100.00 ( 82.11)
Epoch: [20][540/900]  Time  0.159 ( 0.455)  Data  0.000 ( 0.048)  Loss 2.0313e+00 (2.0450e+00)  Acc@1   0.00 ( 19.41)  Acc@5 100.00 ( 81.89)
Epoch: [20][550/900]  Time  0.158 ( 0.450)  Data  0.000 ( 0.047)  Loss 3.1055e+00 (2.0460e+00)  Acc@1   0.00 ( 19.42)  Acc@5   0.00 ( 81.67)
Epoch: [20][560/900]  Time  0.159 ( 0.445)  Data  0.000 ( 0.046)  Loss 2.0760e+00 (2.0461e+00)  Acc@1   0.00 ( 19.25)  Acc@5 100.00 ( 81.64)
Epoch: [20][570/900]  Time  0.159 ( 0.440)  Data  0.000 ( 0.046)  Loss 1.9432e+00 (2.0523e+00)  Acc@1   0.00 ( 18.91)  Acc@5 100.00 ( 81.61)
Epoch: [20][580/900]  Time  0.158 ( 0.435)  Data  0.001 ( 0.045)  Loss 1.7295e+00 (2.0495e+00)  Acc@1   0.00 ( 19.10)  Acc@5 100.00 ( 81.41)
Epoch: [20][590/900]  Time  0.155 ( 0.430)  Data  0.000 ( 0.045)  Loss 1.5650e+00 (2.0458e+00)  Acc@1   0.00 ( 19.29)  Acc@5 100.00 ( 81.39)
Epoch: [20][600/900]  Time  0.159 ( 0.426)  Data  0.000 ( 0.044)  Loss 2.7813e+00 (2.0452e+00)  Acc@1   0.00 ( 19.30)  Acc@5 100.00 ( 81.70)
Epoch: [20][610/900]  Time  0.158 ( 0.421)  Data  0.000 ( 0.043)  Loss 1.2349e+00 (2.0371e+00)  Acc@1 100.00 ( 19.31)  Acc@5 100.00 ( 82.00)
Epoch: [20][620/900]  Time  0.158 ( 0.417)  Data  0.000 ( 0.043)  Loss 1.7804e+00 (2.0417e+00)  Acc@1   0.00 ( 19.48)  Acc@5 100.00 ( 81.96)
Epoch: [20][630/900]  Time  0.158 ( 0.413)  Data  0.001 ( 0.042)  Loss 1.2240e+00 (2.0431e+00)  Acc@1 100.00 ( 19.33)  Acc@5 100.00 ( 81.93)
Epoch: [20][640/900]  Time  0.157 ( 0.409)  Data  0.000 ( 0.042)  Loss 2.4593e+00 (2.0373e+00)  Acc@1   0.00 ( 19.81)  Acc@5 100.00 ( 81.90)
Epoch: [20][650/900]  Time  0.157 ( 0.405)  Data  0.000 ( 0.041)  Loss 1.9445e+00 (2.0415e+00)  Acc@1   0.00 ( 19.82)  Acc@5 100.00 ( 81.87)
Epoch: [20][660/900]  Time  0.159 ( 0.402)  Data  0.000 ( 0.041)  Loss 1.4294e+00 (2.0369e+00)  Acc@1   0.00 ( 19.97)  Acc@5 100.00 ( 82.00)
Epoch: [20][670/900]  Time  0.159 ( 0.398)  Data  0.001 ( 0.040)  Loss 9.3780e-01 (2.0358e+00)  Acc@1 100.00 ( 19.97)  Acc@5 100.00 ( 82.12)
Epoch: [20][680/900]  Time  0.160 ( 0.394)  Data  0.001 ( 0.040)  Loss 1.7501e+00 (2.0380e+00)  Acc@1   0.00 ( 19.82)  Acc@5 100.00 ( 81.94)
Epoch: [20][690/900]  Time  0.157 ( 0.391)  Data  0.000 ( 0.039)  Loss 2.0664e+00 (2.0381e+00)  Acc@1   0.00 ( 19.54)  Acc@5 100.00 ( 81.77)
Epoch: [20][700/900]  Time  0.156 ( 0.388)  Data  0.000 ( 0.039)  Loss 2.0604e+00 (2.0368e+00)  Acc@1   0.00 ( 19.69)  Acc@5 100.00 ( 81.88)
Epoch: [20][710/900]  Time  0.156 ( 0.385)  Data  0.001 ( 0.038)  Loss 2.5807e+00 (2.0388e+00)  Acc@1   0.00 ( 19.69)  Acc@5 100.00 ( 81.86)
Epoch: [20][720/900]  Time  0.159 ( 0.381)  Data  0.001 ( 0.038)  Loss 2.1288e+00 (2.0403e+00)  Acc@1   0.00 ( 19.69)  Acc@5 100.00 ( 82.11)
Epoch: [20][730/900]  Time  0.161 ( 0.378)  Data  0.000 ( 0.037)  Loss 1.3987e+00 (2.0423e+00)  Acc@1   0.00 ( 19.56)  Acc@5 100.00 ( 82.08)
Epoch: [20][740/900]  Time  0.158 ( 0.375)  Data  0.000 ( 0.037)  Loss 1.5643e+00 (2.0443e+00)  Acc@1   0.00 ( 19.43)  Acc@5 100.00 ( 81.92)
Epoch: [20][750/900]  Time  0.157 ( 0.373)  Data  0.000 ( 0.037)  Loss 2.3474e+00 (2.0450e+00)  Acc@1   0.00 ( 19.31)  Acc@5   0.00 ( 81.62)
Epoch: [20][760/900]  Time  0.156 ( 0.370)  Data  0.000 ( 0.036)  Loss 1.7025e+00 (2.0420e+00)  Acc@1   0.00 ( 19.19)  Acc@5 100.00 ( 81.73)
Epoch: [20][770/900]  Time  0.159 ( 0.367)  Data  0.001 ( 0.036)  Loss 2.3098e+00 (2.0422e+00)  Acc@1   0.00 ( 19.20)  Acc@5 100.00 ( 81.58)
Epoch: [20][780/900]  Time  0.156 ( 0.364)  Data  0.000 ( 0.036)  Loss 1.9435e+00 (2.0425e+00)  Acc@1   0.00 ( 19.08)  Acc@5 100.00 ( 81.18)
Epoch: [20][790/900]  Time  0.160 ( 0.362)  Data  0.000 ( 0.035)  Loss 1.6258e+00 (2.0400e+00)  Acc@1   0.00 ( 19.09)  Acc@5 100.00 ( 81.29)
Epoch: [20][800/900]  Time  0.157 ( 0.359)  Data  0.001 ( 0.035)  Loss 1.1790e+00 (2.0414e+00)  Acc@1 100.00 ( 18.98)  Acc@5 100.00 ( 81.27)
Epoch: [20][810/900]  Time  0.159 ( 0.357)  Data  0.001 ( 0.035)  Loss 2.2912e+00 (2.0404e+00)  Acc@1   0.00 ( 18.99)  Acc@5   0.00 ( 81.26)
Epoch: [20][820/900]  Time  0.160 ( 0.354)  Data  0.001 ( 0.034)  Loss 2.4542e+00 (2.0406e+00)  Acc@1   0.00 ( 19.00)  Acc@5   0.00 ( 81.00)
Epoch: [20][830/900]  Time  0.158 ( 0.352)  Data  0.000 ( 0.034)  Loss 1.2103e+00 (2.0384e+00)  Acc@1 100.00 ( 19.01)  Acc@5 100.00 ( 80.99)
Epoch: [20][840/900]  Time  0.158 ( 0.350)  Data  0.001 ( 0.034)  Loss 1.6468e+00 (2.0388e+00)  Acc@1   0.00 ( 18.79)  Acc@5 100.00 ( 80.98)
Epoch: [20][850/900]  Time  0.156 ( 0.347)  Data  0.001 ( 0.033)  Loss 1.7870e+00 (2.0385e+00)  Acc@1   0.00 ( 18.92)  Acc@5 100.00 ( 80.85)
Epoch: [20][860/900]  Time  0.159 ( 0.345)  Data  0.000 ( 0.033)  Loss 2.2311e+00 (2.0392e+00)  Acc@1   0.00 ( 18.93)  Acc@5 100.00 ( 80.72)
Epoch: [20][870/900]  Time  0.158 ( 0.343)  Data  0.001 ( 0.033)  Loss 1.6941e+00 (2.0374e+00)  Acc@1   0.00 ( 18.94)  Acc@5 100.00 ( 80.83)
Epoch: [20][880/900]  Time  0.159 ( 0.341)  Data  0.001 ( 0.032)  Loss 2.3661e+00 (2.0384e+00)  Acc@1   0.00 ( 18.84)  Acc@5 100.00 ( 80.82)
Epoch: [20][890/900]  Time  0.159 ( 0.339)  Data  0.001 ( 0.032)  Loss 2.3517e+00 (2.0357e+00)  Acc@1   0.00 ( 18.86)  Acc@5 100.00 ( 81.03)
Epoch: [20] completed, elapsed time 303.842 seconds
Test: [ 0/90]  Time  2.105 ( 2.105)  Loss 1.7548e+00 (1.7548e+00)  Acc@1   0.00 (  0.00)  Acc@5 100.00 (100.00)
Test: [10/90]  Time  0.084 ( 0.259)  Loss 1.5891e+00 (1.6303e+00)  Acc@1   0.00 (  0.00)  Acc@5 100.00 (100.00)
Test: [20/90]  Time  0.081 ( 0.176)  Loss 1.7160e+00 (1.6740e+00)  Acc@1   0.00 (  0.00)  Acc@5 100.00 (100.00)
Test: [30/90]  Time  0.109 ( 0.149)  Loss 1.7012e+00 (1.6648e+00)  Acc@1   0.00 (  3.23)  Acc@5 100.00 (100.00)
Test: [40/90]  Time  0.083 ( 0.147)  Loss 1.7273e+00 (1.6799e+00)  Acc@1   0.00 (  2.44)  Acc@5 100.00 (100.00)
Test: [50/90]  Time  0.086 ( 0.135)  Loss 2.1467e+00 (1.7406e+00)  Acc@1   0.00 (  1.96)  Acc@5 100.00 (100.00)
Test: [60/90]  Time  0.091 ( 0.127)  Loss 1.4457e+00 (1.7972e+00)  Acc@1 100.00 (  3.28)  Acc@5 100.00 (100.00)
Test: [70/90]  Time  0.086 ( 0.121)  Loss 1.4470e+00 (1.7477e+00)  Acc@1 100.00 ( 16.90)  Acc@5 100.00 (100.00)
Test: [80/90]  Time  0.082 ( 0.117)  Loss 2.5285e+00 (1.7892e+00)  Acc@1   0.00 ( 19.75)  Acc@5   0.00 ( 92.59)
 * Acc@1 17.778 Acc@5 84.444
saved checkpoint to:  models/Tnew6c20e/checkpoint.pth.tar

Accuracy does not increase from epoch 7 until 200. Even after 200 Epochs, my overall accuracy is 23.33%
Now please guide me in this regard. My highest overall accuracy is 27%.

can u please guide me on how to make changes in models or layers in the pre-trained model? or any other suggestion on how to increase accuracy.

Please guide me about the layers of the Model. or how we can change parameters and layers
Thanks

Hi @waseemsofficial, you can change the network architecture with the --arch argument when you run train.py. Here are the different resnet variants in torchvision that you can try:

  • resnet18
  • resnet34
  • resnet50
  • resnet101
  • resnet152

For example, you can use --arch=resnet34 or --arch=resnet50 to add more layers to resnet. However, since your training accuracy is so low to begin with, my guess is that your dataset may need improved as well. It sounds like you only have 15 images per class, whereas you should have a lot more than that.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.