I am using Dusty-nv Jetson-inference. I followed Walhtrough to train the classification of images.
I am training tomato ripening stages. I trained 2 classes the most extreme pure green and pure red. On testing, Results showed only one class and classify all images as pure green ( Pure green 15 images as pure green and pure red 15 test images as pure green again). How to train my data set. I trained up to 35 Epochs.
The other case is that I have 6 classes from pure green to pure red and I trained them to 100 and then 200 epochs. but accuracy is only 20%.
Please identify the issue, and what could be wrong?
Dear, Many thanks for your reply.
Yes, I have followed the exact tutorial as I am doing transfer learning.
I am sharing data for 6 classes, from pure green to Red.
Following is epoch no 21st.
Epoch: [20][ 0/900] Time 151.736 (151.736) Data 14.413 (14.413) Loss 1.9510e+00 (1.9510e+00) Acc@1 0.00 ( 0.00) Acc@5 100.00 (100.00)
Epoch: [20][ 10/900] Time 0.159 (14.526) Data 0.000 ( 1.766) Loss 2.0621e+00 (2.0905e+00) Acc@1 0.00 ( 0.00) Acc@5 100.00 ( 90.91)
Epoch: [20][ 20/900] Time 0.157 ( 7.791) Data 0.000 ( 1.039) Loss 1.0253e+00 (1.9111e+00) Acc@1 100.00 ( 19.05) Acc@5 100.00 ( 95.24)
Epoch: [20][ 30/900] Time 0.158 ( 5.330) Data 0.000 ( 0.708) Loss 1.5839e+00 (1.9153e+00) Acc@1 0.00 ( 16.13) Acc@5 100.00 ( 93.55)
Epoch: [20][ 40/900] Time 0.159 ( 4.069) Data 0.000 ( 0.537) Loss 2.4524e+00 (2.0084e+00) Acc@1 0.00 ( 17.07) Acc@5 100.00 ( 87.80)
Epoch: [20][ 50/900] Time 0.158 ( 3.302) Data 0.001 ( 0.434) Loss 2.1248e+00 (2.0258e+00) Acc@1 0.00 ( 17.65) Acc@5 100.00 ( 90.20)
Epoch: [20][ 60/900] Time 0.161 ( 2.787) Data 0.001 ( 0.364) Loss 1.1415e+00 (1.9788e+00) Acc@1 100.00 ( 19.67) Acc@5 100.00 ( 91.80)
Epoch: [20][ 70/900] Time 0.160 ( 2.417) Data 0.000 ( 0.314) Loss 1.7265e+00 (2.0525e+00) Acc@1 0.00 ( 18.31) Acc@5 100.00 ( 88.73)
Epoch: [20][ 80/900] Time 0.160 ( 2.138) Data 0.000 ( 0.276) Loss 2.1617e+00 (2.0397e+00) Acc@1 0.00 ( 17.28) Acc@5 100.00 ( 87.65)
Epoch: [20][ 90/900] Time 0.158 ( 1.921) Data 0.000 ( 0.246) Loss 1.3998e+00 (1.9995e+00) Acc@1 0.00 ( 17.58) Acc@5 100.00 ( 89.01)
Epoch: [20][100/900] Time 0.159 ( 1.746) Data 0.001 ( 0.223) Loss 1.5428e+00 (1.9539e+00) Acc@1 0.00 ( 19.80) Acc@5 100.00 ( 90.10)
Epoch: [20][110/900] Time 0.157 ( 1.603) Data 0.001 ( 0.203) Loss 3.0696e+00 (2.0262e+00) Acc@1 0.00 ( 18.92) Acc@5 0.00 ( 88.29)
Epoch: [20][120/900] Time 0.158 ( 1.484) Data 0.000 ( 0.187) Loss 2.6331e+00 (2.0204e+00) Acc@1 0.00 ( 18.18) Acc@5 100.00 ( 88.43)
Epoch: [20][130/900] Time 0.161 ( 1.383) Data 0.000 ( 0.174) Loss 1.8139e+00 (2.0167e+00) Acc@1 0.00 ( 19.08) Acc@5 100.00 ( 87.79)
Epoch: [20][140/900] Time 0.161 ( 1.296) Data 0.001 ( 0.162) Loss 2.1644e+00 (2.0445e+00) Acc@1 0.00 ( 18.44) Acc@5 0.00 ( 85.11)
Epoch: [20][150/900] Time 0.158 ( 1.221) Data 0.000 ( 0.152) Loss 2.8062e+00 (2.0470e+00) Acc@1 0.00 ( 17.88) Acc@5 0.00 ( 84.11)
Epoch: [20][160/900] Time 0.156 ( 1.155) Data 0.001 ( 0.143) Loss 1.7622e+00 (2.0375e+00) Acc@1 0.00 ( 18.01) Acc@5 100.00 ( 84.47)
Epoch: [20][170/900] Time 0.159 ( 1.097) Data 0.000 ( 0.135) Loss 3.6050e-01 (2.0003e+00) Acc@1 100.00 ( 20.47) Acc@5 100.00 ( 84.80)
Epoch: [20][180/900] Time 0.158 ( 1.045) Data 0.000 ( 0.128) Loss 1.6848e+00 (2.0566e+00) Acc@1 0.00 ( 19.34) Acc@5 100.00 ( 83.43)
Epoch: [20][190/900] Time 0.160 ( 0.998) Data 0.000 ( 0.121) Loss 1.9842e+00 (2.0412e+00) Acc@1 0.00 ( 19.90) Acc@5 100.00 ( 83.77)
Epoch: [20][200/900] Time 0.156 ( 0.957) Data 0.000 ( 0.116) Loss 1.4973e+00 (2.0434e+00) Acc@1 0.00 ( 19.90) Acc@5 100.00 ( 84.08)
Epoch: [20][210/900] Time 0.158 ( 0.919) Data 0.001 ( 0.111) Loss 2.1533e+00 (2.0486e+00) Acc@1 0.00 ( 19.43) Acc@5 100.00 ( 84.36)
Epoch: [20][220/900] Time 0.158 ( 0.884) Data 0.000 ( 0.106) Loss 1.7518e+00 (2.0428e+00) Acc@1 0.00 ( 19.46) Acc@5 100.00 ( 84.62)
Epoch: [20][230/900] Time 0.158 ( 0.853) Data 0.001 ( 0.102) Loss 1.8696e+00 (2.0310e+00) Acc@1 0.00 ( 20.78) Acc@5 100.00 ( 84.42)
Epoch: [20][240/900] Time 0.156 ( 0.824) Data 0.001 ( 0.098) Loss 1.0003e+00 (2.0360e+00) Acc@1 100.00 ( 21.16) Acc@5 100.00 ( 84.23)
Epoch: [20][250/900] Time 0.159 ( 0.798) Data 0.000 ( 0.094) Loss 2.3924e+00 (2.0312e+00) Acc@1 0.00 ( 21.12) Acc@5 0.00 ( 83.67)
Epoch: [20][260/900] Time 0.148 ( 0.773) Data 0.000 ( 0.091) Loss 1.6305e+00 (2.0256e+00) Acc@1 0.00 ( 21.46) Acc@5 100.00 ( 83.91)
Epoch: [20][270/900] Time 0.156 ( 0.751) Data 0.001 ( 0.088) Loss 2.1856e+00 (2.0292e+00) Acc@1 0.00 ( 21.03) Acc@5 0.00 ( 82.66)
Epoch: [20][280/900] Time 0.159 ( 0.730) Data 0.001 ( 0.085) Loss 2.7033e+00 (2.0430e+00) Acc@1 0.00 ( 20.28) Acc@5 0.00 ( 81.49)
Epoch: [20][290/900] Time 0.159 ( 0.710) Data 0.000 ( 0.082) Loss 1.5022e+00 (2.0399e+00) Acc@1 0.00 ( 20.27) Acc@5 100.00 ( 81.10)
Epoch: [20][300/900] Time 0.159 ( 0.692) Data 0.001 ( 0.080) Loss 2.3162e+00 (2.0365e+00) Acc@1 0.00 ( 20.60) Acc@5 100.00 ( 80.73)
Epoch: [20][310/900] Time 0.160 ( 0.675) Data 0.000 ( 0.078) Loss 3.3808e+00 (2.0352e+00) Acc@1 0.00 ( 20.90) Acc@5 0.00 ( 80.71)
Epoch: [20][320/900] Time 0.158 ( 0.659) Data 0.001 ( 0.075) Loss 1.6032e+00 (2.0371e+00) Acc@1 0.00 ( 20.56) Acc@5 100.00 ( 80.69)
Epoch: [20][330/900] Time 0.157 ( 0.643) Data 0.000 ( 0.073) Loss 1.1670e+00 (2.0275e+00) Acc@1 0.00 ( 20.24) Acc@5 100.00 ( 81.27)
Epoch: [20][340/900] Time 0.158 ( 0.629) Data 0.001 ( 0.071) Loss 6.7029e-01 (2.0336e+00) Acc@1 100.00 ( 20.53) Acc@5 100.00 ( 81.52)
Epoch: [20][350/900] Time 0.159 ( 0.616) Data 0.001 ( 0.070) Loss 2.3698e+00 (2.0486e+00) Acc@1 0.00 ( 19.94) Acc@5 100.00 ( 80.63)
Epoch: [20][360/900] Time 0.157 ( 0.603) Data 0.000 ( 0.068) Loss 2.1335e+00 (2.0412e+00) Acc@1 0.00 ( 20.50) Acc@5 100.00 ( 80.61)
Epoch: [20][370/900] Time 0.160 ( 0.591) Data 0.001 ( 0.066) Loss 1.2511e+00 (2.0331e+00) Acc@1 100.00 ( 21.02) Acc@5 100.00 ( 80.86)
Epoch: [20][380/900] Time 0.157 ( 0.580) Data 0.000 ( 0.065) Loss 3.0436e+00 (2.0418e+00) Acc@1 0.00 ( 20.73) Acc@5 0.00 ( 80.58)
Epoch: [20][390/900] Time 0.159 ( 0.569) Data 0.000 ( 0.063) Loss 1.3161e+00 (2.0407e+00) Acc@1 100.00 ( 20.72) Acc@5 100.00 ( 81.07)
Epoch: [20][400/900] Time 0.159 ( 0.559) Data 0.000 ( 0.062) Loss 2.5490e+00 (2.0370e+00) Acc@1 0.00 ( 20.95) Acc@5 100.00 ( 81.30)
Epoch: [20][410/900] Time 0.157 ( 0.549) Data 0.001 ( 0.061) Loss 1.5901e+00 (2.0384e+00) Acc@1 0.00 ( 20.92) Acc@5 100.00 ( 81.27)
Epoch: [20][420/900] Time 0.159 ( 0.540) Data 0.000 ( 0.059) Loss 1.7302e+00 (2.0333e+00) Acc@1 0.00 ( 21.14) Acc@5 100.00 ( 81.24)
Epoch: [20][430/900] Time 0.158 ( 0.531) Data 0.000 ( 0.058) Loss 2.1498e+00 (2.0323e+00) Acc@1 0.00 ( 20.88) Acc@5 100.00 ( 81.21)
Epoch: [20][440/900] Time 0.158 ( 0.523) Data 0.001 ( 0.057) Loss 1.7591e+00 (2.0276e+00) Acc@1 0.00 ( 20.86) Acc@5 100.00 ( 81.63)
Epoch: [20][450/900] Time 0.157 ( 0.515) Data 0.000 ( 0.056) Loss 1.7298e+00 (2.0251e+00) Acc@1 0.00 ( 20.84) Acc@5 100.00 ( 82.04)
Epoch: [20][460/900] Time 0.160 ( 0.507) Data 0.001 ( 0.055) Loss 2.7736e+00 (2.0277e+00) Acc@1 0.00 ( 20.61) Acc@5 100.00 ( 82.21)
Epoch: [20][470/900] Time 0.162 ( 0.499) Data 0.000 ( 0.054) Loss 1.2765e+00 (2.0307e+00) Acc@1 100.00 ( 20.59) Acc@5 100.00 ( 81.95)
Epoch: [20][480/900] Time 0.159 ( 0.492) Data 0.000 ( 0.053) Loss 2.0055e+00 (2.0271e+00) Acc@1 0.00 ( 20.37) Acc@5 100.00 ( 82.33)
Epoch: [20][490/900] Time 0.159 ( 0.486) Data 0.001 ( 0.052) Loss 3.1931e+00 (2.0320e+00) Acc@1 0.00 ( 20.37) Acc@5 0.00 ( 82.08)
Epoch: [20][500/900] Time 0.160 ( 0.479) Data 0.000 ( 0.051) Loss 2.2306e+00 (2.0368e+00) Acc@1 0.00 ( 20.36) Acc@5 100.00 ( 81.84)
Epoch: [20][510/900] Time 0.157 ( 0.473) Data 0.001 ( 0.050) Loss 2.0753e+00 (2.0380e+00) Acc@1 0.00 ( 20.16) Acc@5 100.00 ( 82.00)
Epoch: [20][520/900] Time 0.158 ( 0.467) Data 0.000 ( 0.049) Loss 1.6929e+00 (2.0398e+00) Acc@1 0.00 ( 19.96) Acc@5 100.00 ( 82.15)
Epoch: [20][530/900] Time 0.157 ( 0.461) Data 0.001 ( 0.049) Loss 1.6216e+00 (2.0457e+00) Acc@1 0.00 ( 19.59) Acc@5 100.00 ( 82.11)
Epoch: [20][540/900] Time 0.159 ( 0.455) Data 0.000 ( 0.048) Loss 2.0313e+00 (2.0450e+00) Acc@1 0.00 ( 19.41) Acc@5 100.00 ( 81.89)
Epoch: [20][550/900] Time 0.158 ( 0.450) Data 0.000 ( 0.047) Loss 3.1055e+00 (2.0460e+00) Acc@1 0.00 ( 19.42) Acc@5 0.00 ( 81.67)
Epoch: [20][560/900] Time 0.159 ( 0.445) Data 0.000 ( 0.046) Loss 2.0760e+00 (2.0461e+00) Acc@1 0.00 ( 19.25) Acc@5 100.00 ( 81.64)
Epoch: [20][570/900] Time 0.159 ( 0.440) Data 0.000 ( 0.046) Loss 1.9432e+00 (2.0523e+00) Acc@1 0.00 ( 18.91) Acc@5 100.00 ( 81.61)
Epoch: [20][580/900] Time 0.158 ( 0.435) Data 0.001 ( 0.045) Loss 1.7295e+00 (2.0495e+00) Acc@1 0.00 ( 19.10) Acc@5 100.00 ( 81.41)
Epoch: [20][590/900] Time 0.155 ( 0.430) Data 0.000 ( 0.045) Loss 1.5650e+00 (2.0458e+00) Acc@1 0.00 ( 19.29) Acc@5 100.00 ( 81.39)
Epoch: [20][600/900] Time 0.159 ( 0.426) Data 0.000 ( 0.044) Loss 2.7813e+00 (2.0452e+00) Acc@1 0.00 ( 19.30) Acc@5 100.00 ( 81.70)
Epoch: [20][610/900] Time 0.158 ( 0.421) Data 0.000 ( 0.043) Loss 1.2349e+00 (2.0371e+00) Acc@1 100.00 ( 19.31) Acc@5 100.00 ( 82.00)
Epoch: [20][620/900] Time 0.158 ( 0.417) Data 0.000 ( 0.043) Loss 1.7804e+00 (2.0417e+00) Acc@1 0.00 ( 19.48) Acc@5 100.00 ( 81.96)
Epoch: [20][630/900] Time 0.158 ( 0.413) Data 0.001 ( 0.042) Loss 1.2240e+00 (2.0431e+00) Acc@1 100.00 ( 19.33) Acc@5 100.00 ( 81.93)
Epoch: [20][640/900] Time 0.157 ( 0.409) Data 0.000 ( 0.042) Loss 2.4593e+00 (2.0373e+00) Acc@1 0.00 ( 19.81) Acc@5 100.00 ( 81.90)
Epoch: [20][650/900] Time 0.157 ( 0.405) Data 0.000 ( 0.041) Loss 1.9445e+00 (2.0415e+00) Acc@1 0.00 ( 19.82) Acc@5 100.00 ( 81.87)
Epoch: [20][660/900] Time 0.159 ( 0.402) Data 0.000 ( 0.041) Loss 1.4294e+00 (2.0369e+00) Acc@1 0.00 ( 19.97) Acc@5 100.00 ( 82.00)
Epoch: [20][670/900] Time 0.159 ( 0.398) Data 0.001 ( 0.040) Loss 9.3780e-01 (2.0358e+00) Acc@1 100.00 ( 19.97) Acc@5 100.00 ( 82.12)
Epoch: [20][680/900] Time 0.160 ( 0.394) Data 0.001 ( 0.040) Loss 1.7501e+00 (2.0380e+00) Acc@1 0.00 ( 19.82) Acc@5 100.00 ( 81.94)
Epoch: [20][690/900] Time 0.157 ( 0.391) Data 0.000 ( 0.039) Loss 2.0664e+00 (2.0381e+00) Acc@1 0.00 ( 19.54) Acc@5 100.00 ( 81.77)
Epoch: [20][700/900] Time 0.156 ( 0.388) Data 0.000 ( 0.039) Loss 2.0604e+00 (2.0368e+00) Acc@1 0.00 ( 19.69) Acc@5 100.00 ( 81.88)
Epoch: [20][710/900] Time 0.156 ( 0.385) Data 0.001 ( 0.038) Loss 2.5807e+00 (2.0388e+00) Acc@1 0.00 ( 19.69) Acc@5 100.00 ( 81.86)
Epoch: [20][720/900] Time 0.159 ( 0.381) Data 0.001 ( 0.038) Loss 2.1288e+00 (2.0403e+00) Acc@1 0.00 ( 19.69) Acc@5 100.00 ( 82.11)
Epoch: [20][730/900] Time 0.161 ( 0.378) Data 0.000 ( 0.037) Loss 1.3987e+00 (2.0423e+00) Acc@1 0.00 ( 19.56) Acc@5 100.00 ( 82.08)
Epoch: [20][740/900] Time 0.158 ( 0.375) Data 0.000 ( 0.037) Loss 1.5643e+00 (2.0443e+00) Acc@1 0.00 ( 19.43) Acc@5 100.00 ( 81.92)
Epoch: [20][750/900] Time 0.157 ( 0.373) Data 0.000 ( 0.037) Loss 2.3474e+00 (2.0450e+00) Acc@1 0.00 ( 19.31) Acc@5 0.00 ( 81.62)
Epoch: [20][760/900] Time 0.156 ( 0.370) Data 0.000 ( 0.036) Loss 1.7025e+00 (2.0420e+00) Acc@1 0.00 ( 19.19) Acc@5 100.00 ( 81.73)
Epoch: [20][770/900] Time 0.159 ( 0.367) Data 0.001 ( 0.036) Loss 2.3098e+00 (2.0422e+00) Acc@1 0.00 ( 19.20) Acc@5 100.00 ( 81.58)
Epoch: [20][780/900] Time 0.156 ( 0.364) Data 0.000 ( 0.036) Loss 1.9435e+00 (2.0425e+00) Acc@1 0.00 ( 19.08) Acc@5 100.00 ( 81.18)
Epoch: [20][790/900] Time 0.160 ( 0.362) Data 0.000 ( 0.035) Loss 1.6258e+00 (2.0400e+00) Acc@1 0.00 ( 19.09) Acc@5 100.00 ( 81.29)
Epoch: [20][800/900] Time 0.157 ( 0.359) Data 0.001 ( 0.035) Loss 1.1790e+00 (2.0414e+00) Acc@1 100.00 ( 18.98) Acc@5 100.00 ( 81.27)
Epoch: [20][810/900] Time 0.159 ( 0.357) Data 0.001 ( 0.035) Loss 2.2912e+00 (2.0404e+00) Acc@1 0.00 ( 18.99) Acc@5 0.00 ( 81.26)
Epoch: [20][820/900] Time 0.160 ( 0.354) Data 0.001 ( 0.034) Loss 2.4542e+00 (2.0406e+00) Acc@1 0.00 ( 19.00) Acc@5 0.00 ( 81.00)
Epoch: [20][830/900] Time 0.158 ( 0.352) Data 0.000 ( 0.034) Loss 1.2103e+00 (2.0384e+00) Acc@1 100.00 ( 19.01) Acc@5 100.00 ( 80.99)
Epoch: [20][840/900] Time 0.158 ( 0.350) Data 0.001 ( 0.034) Loss 1.6468e+00 (2.0388e+00) Acc@1 0.00 ( 18.79) Acc@5 100.00 ( 80.98)
Epoch: [20][850/900] Time 0.156 ( 0.347) Data 0.001 ( 0.033) Loss 1.7870e+00 (2.0385e+00) Acc@1 0.00 ( 18.92) Acc@5 100.00 ( 80.85)
Epoch: [20][860/900] Time 0.159 ( 0.345) Data 0.000 ( 0.033) Loss 2.2311e+00 (2.0392e+00) Acc@1 0.00 ( 18.93) Acc@5 100.00 ( 80.72)
Epoch: [20][870/900] Time 0.158 ( 0.343) Data 0.001 ( 0.033) Loss 1.6941e+00 (2.0374e+00) Acc@1 0.00 ( 18.94) Acc@5 100.00 ( 80.83)
Epoch: [20][880/900] Time 0.159 ( 0.341) Data 0.001 ( 0.032) Loss 2.3661e+00 (2.0384e+00) Acc@1 0.00 ( 18.84) Acc@5 100.00 ( 80.82)
Epoch: [20][890/900] Time 0.159 ( 0.339) Data 0.001 ( 0.032) Loss 2.3517e+00 (2.0357e+00) Acc@1 0.00 ( 18.86) Acc@5 100.00 ( 81.03)
Epoch: [20] completed, elapsed time 303.842 seconds
Test: [ 0/90] Time 2.105 ( 2.105) Loss 1.7548e+00 (1.7548e+00) Acc@1 0.00 ( 0.00) Acc@5 100.00 (100.00)
Test: [10/90] Time 0.084 ( 0.259) Loss 1.5891e+00 (1.6303e+00) Acc@1 0.00 ( 0.00) Acc@5 100.00 (100.00)
Test: [20/90] Time 0.081 ( 0.176) Loss 1.7160e+00 (1.6740e+00) Acc@1 0.00 ( 0.00) Acc@5 100.00 (100.00)
Test: [30/90] Time 0.109 ( 0.149) Loss 1.7012e+00 (1.6648e+00) Acc@1 0.00 ( 3.23) Acc@5 100.00 (100.00)
Test: [40/90] Time 0.083 ( 0.147) Loss 1.7273e+00 (1.6799e+00) Acc@1 0.00 ( 2.44) Acc@5 100.00 (100.00)
Test: [50/90] Time 0.086 ( 0.135) Loss 2.1467e+00 (1.7406e+00) Acc@1 0.00 ( 1.96) Acc@5 100.00 (100.00)
Test: [60/90] Time 0.091 ( 0.127) Loss 1.4457e+00 (1.7972e+00) Acc@1 100.00 ( 3.28) Acc@5 100.00 (100.00)
Test: [70/90] Time 0.086 ( 0.121) Loss 1.4470e+00 (1.7477e+00) Acc@1 100.00 ( 16.90) Acc@5 100.00 (100.00)
Test: [80/90] Time 0.082 ( 0.117) Loss 2.5285e+00 (1.7892e+00) Acc@1 0.00 ( 19.75) Acc@5 0.00 ( 92.59)
* Acc@1 17.778 Acc@5 84.444
saved checkpoint to: models/Tnew6c20e/checkpoint.pth.tar
Accuracy does not increase from epoch 7 until 200. Even after 200 Epochs, my overall accuracy is 23.33%
Now please guide me in this regard. My highest overall accuracy is 27%.
Hi @waseemsofficial, you can change the network architecture with the --arch argument when you run train.py. Here are the different resnet variants in torchvision that you can try:
resnet18
resnet34
resnet50
resnet101
resnet152
For example, you can use --arch=resnet34 or --arch=resnet50 to add more layers to resnet. However, since your training accuracy is so low to begin with, my guess is that your dataset may need improved as well. It sounds like you only have 15 images per class, whereas you should have a lot more than that.