Error while training using the detectnet_v2 notebook provided in the TAO toolkit with using the custom dataset

While using the TAO toolkit sample detectnet_v2 notebook to train the model with our custom dataset (a small dataset with only 50 images). We converted our dataset to the KITTI format as stated here.
The TFRecords were created without any error.
The training stops abruptly with a error as given below.

2022-12-16 14:15:56,720 [ERROR] tensorflow: ==================================
Object was never used (type <class 'tensorflow.python.framework.ops.Tensor'>):
<tf.Tensor 'IsVariableInitialized_298:0' shape=() dtype=bool>
If you want to mark it as used call its "mark_used()" method.
It was originally created here:
  File "<frozen iva.detectnet_v2.training.utilities>", line 143, in get_singular_monitored_session  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py", line 1104, in __init__
    stop_grace_period_secs=stop_grace_period_secs)  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py", line 727, in __init__
    self._sess = self._coordinated_creator.create_session()  File "<frozen moduluspy.modulus.hooks.hooks>", line 285, in begin  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/util/tf_should_use.py", line 198, in wrapped
    return _add_should_use_warning(fn(*args, **kwargs))
==================================
--------------------------------------------------------------------------
Primary job  terminated normally, but 1 process returned
a non-zero exit code. Per user-direction, the job has been aborted.
--------------------------------------------------------------------------
--------------------------------------------------------------------------
mpirun detected that one or more processes exited with non-zero status, thus causing
the job to be terminated. The first process to do so was:

  Process name: [[63876,1],1]
  Exit code:    1
--------------------------------------------------------------------------
Telemetry data couldn't be sent, but the command ran successfully.
[WARNING]: <urlopen error [Errno -2] Name or service not known>
Execution status: FAIL
2022-12-16 15:16:00,884 [INFO] tlt.components.docker_handler.docker_handler: Stopping container.

To narrow down, did you ever run default detectnet_v2 notebook successfully?

I want to use detectnet’s configure for yolor. Is it possible?

Yes. With the default KITTI dataset it was running fine. Apparently we need to use our own custom data. The annotated data is exported in KITTI format and cleaned to match the format supported by TAO as mentioned here.

1 Like

Thank you very much!

Yes, please follow Data Annotation Format — TAO Toolkit 3.22.05 documentation for the labels files.

Yes, I am following the data format mentioned here. The TFRecords are being created. But the training crashes.

Can you run with the default notebook successfully?

Yes. With the default notebook and default dataset it works

OK. So, could you share an example of your label file?

More, please share the full command , spec and log when you generate tfrecord files.

Command used for generating the TFRecords is :

!tao detectnet_v2 dataset_convert \
                  -d $SPECS_DIR/detectnet_v2_tfrecords_kitti_trainval.txt \
                  -o $DATA_DOWNLOAD_DIR/tfrecords/kitti_trainval/kitti_trainval

Sample of a label file:

blade 0.00 0 0.0 0.79 515.7 1001.25 718.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00
blade 0.00 0 0.0 0.0 413.56 241.1 512.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Spec file for generating the TFRecord:


kitti_config {
  root_directory_path: "/workspace/tao-experiments/data/training"
  image_dir_name: "image_2"
  label_dir_name: "label_2"
  image_extension: ".jpg"
  partition_mode: "random"
  num_partitions: 2
  val_split: 10
  num_shards: 3
}
image_directory_path: "/workspace/tao-experiments/data/training"

Could you share the full log as well? Thanks.

More, please share the full log for “The training stops abruptly”.

This is the entire output log after initiating the training.

2023-01-03 11:16:37,600 [INFO] root: Registry: ['nvcr.io']
2023-01-03 11:16:37,684 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:4.0.0-tf1.15.5
2023-01-03 11:16:38,305 [WARNING] tlt.components.docker_handler.docker_handler: 
Docker will run the commands as root. If you would like to retain your
local host permissions, please add the "user":"UID:GID" in the
DockerOptions portion of the "/home/projectpc/.tao_mounts.json" file. You can obtain your
users UID and GID by using the "id -u" and "id -g" commands on the
terminal.
Using TensorFlow backend.
2023-01-03 10:16:39.537487: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
/usr/local/lib/python3.6/dist-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.5) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
/usr/local/lib/python3.6/dist-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.5) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
Using TensorFlow backend.
2023-01-03 10:16:50,711 [INFO] iva.common.logging.logging: Log file already exists at /workspace/tao-experiments/detectnet_v2/experiment_dir_unpruned/status.json
2023-01-03 10:16:50,711 [INFO] root: Starting DetectNet_v2 Training job
2023-01-03 10:16:50,712 [INFO] __main__: Loading experiment spec at /workspace/tao-experiments/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt.
2023-01-03 10:16:50,714 [INFO] iva.detectnet_v2.spec_handler.spec_loader: Merging specification from /workspace/tao-experiments/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt
2023-01-03 10:16:50,741 [INFO] root: Training gridbox model.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

2023-01-03 10:16:50,741 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

/usr/local/lib/python3.6/dist-packages/requests/__init__.py:91: RequestsDependencyWarning: urllib3 (1.26.5) or chardet (3.0.4) doesn't match a supported version!
  RequestsDependencyWarning)
Using TensorFlow backend.
2023-01-03 10:16:50,764 [INFO] iva.common.logging.logging: Log file already exists at /workspace/tao-experiments/detectnet_v2/experiment_dir_unpruned/status.json
2023-01-03 10:16:50,765 [INFO] root: Starting DetectNet_v2 Training job
2023-01-03 10:16:50,765 [INFO] __main__: Loading experiment spec at /workspace/tao-experiments/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt.
2023-01-03 10:16:50,767 [INFO] iva.detectnet_v2.spec_handler.spec_loader: Merging specification from /workspace/tao-experiments/detectnet_v2/specs/detectnet_v2_train_resnet18_kitti.txt
2023-01-03 10:16:50,784 [INFO] root: Training gridbox model.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

2023-01-03 10:16:50,785 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.

2023-01-03 10:16:50,797 [INFO] root: Sampling mode of the dataloader was set to user_defined.
2023-01-03 10:16:50,798 [INFO] __main__: Cannot iterate over exactly 30 samples with a batch size of 4; each epoch will therefore take one extra step.
2023-01-03 10:16:50,841 [INFO] root: Sampling mode of the dataloader was set to user_defined.
2023-01-03 10:16:50,841 [INFO] __main__: Cannot iterate over exactly 30 samples with a batch size of 4; each epoch will therefore take one extra step.
2023-01-03 10:16:51,036 [INFO] root: Building DetectNet V2 model
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

2023-01-03 10:16:51,036 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

2023-01-03 10:16:51,038 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

2023-01-03 10:16:51,044 [INFO] root: Building DetectNet V2 model
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

2023-01-03 10:16:51,045 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

2023-01-03 10:16:51,046 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.

2023-01-03 10:16:51,070 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.

2023-01-03 10:16:51,082 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/third_party/keras/tensorflow_backend.py:187: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

2023-01-03 10:16:52,525 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/third_party/keras/tensorflow_backend.py:187: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/third_party/keras/tensorflow_backend.py:187: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

2023-01-03 10:16:52,561 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/third_party/keras/tensorflow_backend.py:187: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

2023-01-03 10:16:52,791 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

2023-01-03 10:16:52,791 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

2023-01-03 10:16:52,791 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

2023-01-03 10:16:52,816 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

2023-01-03 10:16:52,817 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

2023-01-03 10:16:52,817 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

2023-01-03 10:16:53,605 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

2023-01-03 10:16:53,668 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.

2023-01-03 10:17:07,748 [INFO] iva.detectnet_v2.objectives.bbox_objective: Default L1 loss function will be used.
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, 3, 384, 1248) 0                                            
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 64, 192, 624) 9472        input_1[0][0]                    
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 64, 192, 624) 256         conv1[0][0]                      
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 64, 192, 624) 0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
block_1a_conv_1 (Conv2D)        (None, 64, 96, 312)  36928       activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_1 (BatchNormalizati (None, 64, 96, 312)  256         block_1a_conv_1[0][0]            
__________________________________________________________________________________________________
block_1a_relu_1 (Activation)    (None, 64, 96, 312)  0           block_1a_bn_1[0][0]              
__________________________________________________________________________________________________
block_1a_conv_2 (Conv2D)        (None, 64, 96, 312)  36928       block_1a_relu_1[0][0]            
__________________________________________________________________________________________________
block_1a_conv_shortcut (Conv2D) (None, 64, 96, 312)  4160        activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_2 (BatchNormalizati (None, 64, 96, 312)  256         block_1a_conv_2[0][0]            
__________________________________________________________________________________________________
block_1a_bn_shortcut (BatchNorm (None, 64, 96, 312)  256         block_1a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_1 (Add)                     (None, 64, 96, 312)  0           block_1a_bn_2[0][0]              
                                                                 block_1a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_1a_relu (Activation)      (None, 64, 96, 312)  0           add_1[0][0]                      
__________________________________________________________________________________________________
block_1b_conv_1 (Conv2D)        (None, 64, 96, 312)  36928       block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_bn_1 (BatchNormalizati (None, 64, 96, 312)  256         block_1b_conv_1[0][0]            
__________________________________________________________________________________________________
block_1b_relu_1 (Activation)    (None, 64, 96, 312)  0           block_1b_bn_1[0][0]              
__________________________________________________________________________________________________
block_1b_conv_2 (Conv2D)        (None, 64, 96, 312)  36928       block_1b_relu_1[0][0]            
__________________________________________________________________________________________________
block_1b_bn_2 (BatchNormalizati (None, 64, 96, 312)  256         block_1b_conv_2[0][0]            
__________________________________________________________________________________________________
add_2 (Add)                     (None, 64, 96, 312)  0           block_1b_bn_2[0][0]              
                                                                 block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_relu (Activation)      (None, 64, 96, 312)  0           add_2[0][0]                      
__________________________________________________________________________________________________
block_2a_conv_1 (Conv2D)        (None, 128, 48, 156) 73856       block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_1 (BatchNormalizati (None, 128, 48, 156) 512         block_2a_conv_1[0][0]            
__________________________________________________________________________________________________
block_2a_relu_1 (Activation)    (None, 128, 48, 156) 0           block_2a_bn_1[0][0]              
__________________________________________________________________________________________________
block_2a_conv_2 (Conv2D)        (None, 128, 48, 156) 147584      block_2a_relu_1[0][0]            
__________________________________________________________________________________________________
block_2a_conv_shortcut (Conv2D) (None, 128, 48, 156) 8320        block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_2 (BatchNormalizati (None, 128, 48, 156) 512         block_2a_conv_2[0][0]            
__________________________________________________________________________________________________
block_2a_bn_shortcut (BatchNorm (None, 128, 48, 156) 512         block_2a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_3 (Add)                     (None, 128, 48, 156) 0           block_2a_bn_2[0][0]              
                                                                 block_2a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_2a_relu (Activation)      (None, 128, 48, 156) 0           add_3[0][0]                      
__________________________________________________________________________________________________
block_2b_conv_1 (Conv2D)        (None, 128, 48, 156) 147584      block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_bn_1 (BatchNormalizati (None, 128, 48, 156) 512         block_2b_conv_1[0][0]            
__________________________________________________________________________________________________
block_2b_relu_1 (Activation)    (None, 128, 48, 156) 0           block_2b_bn_1[0][0]              
__________________________________________________________________________________________________
block_2b_conv_2 (Conv2D)        (None, 128, 48, 156) 147584      block_2b_relu_1[0][0]            
__________________________________________________________________________________________________
block_2b_bn_2 (BatchNormalizati (None, 128, 48, 156) 512         block_2b_conv_2[0][0]            
__________________________________________________________________________________________________
add_4 (Add)                     (None, 128, 48, 156) 0           block_2b_bn_2[0][0]              
                                                                 block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_relu (Activation)      (None, 128, 48, 156) 0           add_4[0][0]                      
__________________________________________________________________________________________________
block_3a_conv_1 (Conv2D)        (None, 256, 24, 78)  295168      block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_1 (BatchNormalizati (None, 256, 24, 78)  1024        block_3a_conv_1[0][0]            
__________________________________________________________________________________________________
block_3a_relu_1 (Activation)    (None, 256, 24, 78)  0           block_3a_bn_1[0][0]              
__________________________________________________________________________________________________
block_3a_conv_2 (Conv2D)        (None, 256, 24, 78)  590080      block_3a_relu_1[0][0]            
__________________________________________________________________________________________________
block_3a_conv_shortcut (Conv2D) (None, 256, 24, 78)  33024       block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_2 (BatchNormalizati (None, 256, 24, 78)  1024        block_3a_conv_2[0][0]            
__________________________________________________________________________________________________
block_3a_bn_shortcut (BatchNorm (None, 256, 24, 78)  1024        block_3a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_5 (Add)                     (None, 256, 24, 78)  0           block_3a_bn_2[0][0]              
                                                                 block_3a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_3a_relu (Activation)      (None, 256, 24, 78)  0           add_5[0][0]                      
__________________________________________________________________________________________________
block_3b_conv_1 (Conv2D)        (None, 256, 24, 78)  590080      block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_bn_1 (BatchNormalizati (None, 256, 24, 78)  1024        block_3b_conv_1[0][0]            
__________________________________________________________________________________________________
block_3b_relu_1 (Activation)    (None, 256, 24, 78)  0           block_3b_bn_1[0][0]              
__________________________________________________________________________________________________
block_3b_conv_2 (Conv2D)        (None, 256, 24, 78)  590080      block_3b_relu_1[0][0]            
__________________________________________________________________________________________________
block_3b_bn_2 (BatchNormalizati (None, 256, 24, 78)  1024        block_3b_conv_2[0][0]            
__________________________________________________________________________________________________
add_6 (Add)                     (None, 256, 24, 78)  0           block_3b_bn_2[0][0]              
                                                                 block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_relu (Activation)      (None, 256, 24, 78)  0           add_6[0][0]                      
__________________________________________________________________________________________________
block_4a_conv_1 (Conv2D)        (None, 512, 24, 78)  1180160     block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_1 (BatchNormalizati (None, 512, 24, 78)  2048        block_4a_conv_1[0][0]            
__________________________________________________________________________________________________
block_4a_relu_1 (Activation)    (None, 512, 24, 78)  0           block_4a_bn_1[0][0]              
__________________________________________________________________________________________________
block_4a_conv_2 (Conv2D)        (None, 512, 24, 78)  2359808     block_4a_relu_1[0][0]            
__________________________________________________________________________________________________
block_4a_conv_shortcut (Conv2D) (None, 512, 24, 78)  131584      block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_2 (BatchNormalizati (None, 512, 24, 78)  2048        block_4a_conv_2[0][0]            
__________________________________________________________________________________________________
block_4a_bn_shortcut (BatchNorm (None, 512, 24, 78)  2048        block_4a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_7 (Add)                     (None, 512, 24, 78)  0           block_4a_bn_2[0][0]              
                                                                 block_4a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_4a_relu (Activation)      (None, 512, 24, 78)  0           add_7[0][0]                      
__________________________________________________________________________________________________
block_4b_conv_1 (Conv2D)        (None, 512, 24, 78)  2359808     block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_bn_1 (BatchNormalizati (None, 512, 24, 78)  2048        block_4b_conv_1[0][0]            
__________________________________________________________________________________________________
block_4b_relu_1 (Activation)    (None, 512, 24, 78)  0           block_4b_bn_1[0][0]              
__________________________________________________________________________________________________
block_4b_conv_2 (Conv2D)        (None, 512, 24, 78)  2359808     block_4b_relu_1[0][0]            
__________________________________________________________________________________________________
block_4b_bn_2 (BatchNormalizati (None, 512, 24, 78)  2048        block_4b_conv_2[0][0]            
__________________________________________________________________________________________________
add_8 (Add)                     (None, 512, 24, 78)  0           block_4b_bn_2[0][0]              
                                                                 block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_relu (Activation)      (None, 512, 24, 78)  0           add_8[0][0]                      
__________________________________________________________________________________________________
output_bbox (Conv2D)            (None, 20, 24, 78)   10260       block_4b_relu[0][0]              
__________________________________________________________________________________________________
output_cov (Conv2D)             (None, 5, 24, 78)    2565        block_4b_relu[0][0]              
==================================================================================================
Total params: 11,208,153
Trainable params: 11,198,425
Non-trainable params: 9,728
__________________________________________________________________________________________________
2023-01-03 10:17:07,783 [INFO] root: DetectNet V2 model built.
2023-01-03 10:17:07,783 [INFO] root: Building rasterizer.
2023-01-03 10:17:07,784 [INFO] root: Rasterizers built.
2023-01-03 10:17:07,804 [INFO] root: Building training graph.
2023-01-03 10:17:07,807 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False
2023-01-03 10:17:07,807 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False
2023-01-03 10:17:07,807 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0)
2023-01-03 10:17:07,807 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 8, io threads: 8, compute threads: 4, buffered batches: 4
2023-01-03 10:17:07,807 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 30, number of sources: 1, batch size per gpu: 4, steps: 4
2023-01-03 10:17:07,834 [INFO] iva.detectnet_v2.objectives.bbox_objective: Default L1 loss function will be used.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.

2023-01-03 10:17:07,859 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, 3, 384, 1248) 0                                            
__________________________________________________________________________________________________
conv1 (Conv2D)                  (None, 64, 192, 624) 9472        input_1[0][0]                    
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization)   (None, 64, 192, 624) 256         conv1[0][0]                      
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 64, 192, 624) 0           bn_conv1[0][0]                   
__________________________________________________________________________________________________
block_1a_conv_1 (Conv2D)        (None, 64, 96, 312)  36928       activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_1 (BatchNormalizati (None, 64, 96, 312)  256         block_1a_conv_1[0][0]            
__________________________________________________________________________________________________
block_1a_relu_1 (Activation)    (None, 64, 96, 312)  0           block_1a_bn_1[0][0]              
__________________________________________________________________________________________________
block_1a_conv_2 (Conv2D)        (None, 64, 96, 312)  36928       block_1a_relu_1[0][0]            
__________________________________________________________________________________________________
block_1a_conv_shortcut (Conv2D) (None, 64, 96, 312)  4160        activation_1[0][0]               
__________________________________________________________________________________________________
block_1a_bn_2 (BatchNormalizati (None, 64, 96, 312)  256         block_1a_conv_2[0][0]            
__________________________________________________________________________________________________
block_1a_bn_shortcut (BatchNorm (None, 64, 96, 312)  256         block_1a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_1 (Add)                     (None, 64, 96, 312)  0           block_1a_bn_2[0][0]              
                                                                 block_1a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_1a_relu (Activation)      (None, 64, 96, 312)  0           add_1[0][0]                      
__________________________________________________________________________________________________
block_1b_conv_1 (Conv2D)        (None, 64, 96, 312)  36928       block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_bn_1 (BatchNormalizati (None, 64, 96, 312)  256         block_1b_conv_1[0][0]            
__________________________________________________________________________________________________
block_1b_relu_1 (Activation)    (None, 64, 96, 312)  0           block_1b_bn_1[0][0]              
__________________________________________________________________________________________________
block_1b_conv_2 (Conv2D)        (None, 64, 96, 312)  36928       block_1b_relu_1[0][0]            
__________________________________________________________________________________________________
block_1b_bn_2 (BatchNormalizati (None, 64, 96, 312)  256         block_1b_conv_2[0][0]            
__________________________________________________________________________________________________
add_2 (Add)                     (None, 64, 96, 312)  0           block_1b_bn_2[0][0]              
                                                                 block_1a_relu[0][0]              
__________________________________________________________________________________________________
block_1b_relu (Activation)      (None, 64, 96, 312)  0           add_2[0][0]                      
__________________________________________________________________________________________________
block_2a_conv_1 (Conv2D)        (None, 128, 48, 156) 73856       block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_1 (BatchNormalizati (None, 128, 48, 156) 512         block_2a_conv_1[0][0]            
__________________________________________________________________________________________________
block_2a_relu_1 (Activation)    (None, 128, 48, 156) 0           block_2a_bn_1[0][0]              
__________________________________________________________________________________________________
block_2a_conv_2 (Conv2D)        (None, 128, 48, 156) 147584      block_2a_relu_1[0][0]            
__________________________________________________________________________________________________
block_2a_conv_shortcut (Conv2D) (None, 128, 48, 156) 8320        block_1b_relu[0][0]              
__________________________________________________________________________________________________
block_2a_bn_2 (BatchNormalizati (None, 128, 48, 156) 512         block_2a_conv_2[0][0]            
__________________________________________________________________________________________________
block_2a_bn_shortcut (BatchNorm (None, 128, 48, 156) 512         block_2a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_3 (Add)                     (None, 128, 48, 156) 0           block_2a_bn_2[0][0]              
                                                                 block_2a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_2a_relu (Activation)      (None, 128, 48, 156) 0           add_3[0][0]                      
__________________________________________________________________________________________________
block_2b_conv_1 (Conv2D)        (None, 128, 48, 156) 147584      block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_bn_1 (BatchNormalizati (None, 128, 48, 156) 512         block_2b_conv_1[0][0]            
__________________________________________________________________________________________________
block_2b_relu_1 (Activation)    (None, 128, 48, 156) 0           block_2b_bn_1[0][0]              
__________________________________________________________________________________________________
block_2b_conv_2 (Conv2D)        (None, 128, 48, 156) 147584      block_2b_relu_1[0][0]            
__________________________________________________________________________________________________
block_2b_bn_2 (BatchNormalizati (None, 128, 48, 156) 512         block_2b_conv_2[0][0]            
__________________________________________________________________________________________________
add_4 (Add)                     (None, 128, 48, 156) 0           block_2b_bn_2[0][0]              
                                                                 block_2a_relu[0][0]              
__________________________________________________________________________________________________
block_2b_relu (Activation)      (None, 128, 48, 156) 0           add_4[0][0]                      
__________________________________________________________________________________________________
block_3a_conv_1 (Conv2D)        (None, 256, 24, 78)  295168      block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_1 (BatchNormalizati (None, 256, 24, 78)  1024        block_3a_conv_1[0][0]            
__________________________________________________________________________________________________
block_3a_relu_1 (Activation)    (None, 256, 24, 78)  0           block_3a_bn_1[0][0]              
__________________________________________________________________________________________________
block_3a_conv_2 (Conv2D)        (None, 256, 24, 78)  590080      block_3a_relu_1[0][0]            
__________________________________________________________________________________________________
block_3a_conv_shortcut (Conv2D) (None, 256, 24, 78)  33024       block_2b_relu[0][0]              
__________________________________________________________________________________________________
block_3a_bn_2 (BatchNormalizati (None, 256, 24, 78)  1024        block_3a_conv_2[0][0]            
__________________________________________________________________________________________________
block_3a_bn_shortcut (BatchNorm (None, 256, 24, 78)  1024        block_3a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_5 (Add)                     (None, 256, 24, 78)  0           block_3a_bn_2[0][0]              
                                                                 block_3a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_3a_relu (Activation)      (None, 256, 24, 78)  0           add_5[0][0]                      
__________________________________________________________________________________________________
block_3b_conv_1 (Conv2D)        (None, 256, 24, 78)  590080      block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_bn_1 (BatchNormalizati (None, 256, 24, 78)  1024        block_3b_conv_1[0][0]            
__________________________________________________________________________________________________
block_3b_relu_1 (Activation)    (None, 256, 24, 78)  0           block_3b_bn_1[0][0]              
__________________________________________________________________________________________________
block_3b_conv_2 (Conv2D)        (None, 256, 24, 78)  590080      block_3b_relu_1[0][0]            
__________________________________________________________________________________________________
block_3b_bn_2 (BatchNormalizati (None, 256, 24, 78)  1024        block_3b_conv_2[0][0]            
__________________________________________________________________________________________________
add_6 (Add)                     (None, 256, 24, 78)  0           block_3b_bn_2[0][0]              
                                                                 block_3a_relu[0][0]              
__________________________________________________________________________________________________
block_3b_relu (Activation)      (None, 256, 24, 78)  0           add_6[0][0]                      
__________________________________________________________________________________________________
block_4a_conv_1 (Conv2D)        (None, 512, 24, 78)  1180160     block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_1 (BatchNormalizati (None, 512, 24, 78)  2048        block_4a_conv_1[0][0]            
__________________________________________________________________________________________________
block_4a_relu_1 (Activation)    (None, 512, 24, 78)  0           block_4a_bn_1[0][0]              
__________________________________________________________________________________________________
block_4a_conv_2 (Conv2D)        (None, 512, 24, 78)  2359808     block_4a_relu_1[0][0]            
__________________________________________________________________________________________________
block_4a_conv_shortcut (Conv2D) (None, 512, 24, 78)  131584      block_3b_relu[0][0]              
__________________________________________________________________________________________________
block_4a_bn_2 (BatchNormalizati (None, 512, 24, 78)  2048        block_4a_conv_2[0][0]            
__________________________________________________________________________________________________
block_4a_bn_shortcut (BatchNorm (None, 512, 24, 78)  2048        block_4a_conv_shortcut[0][0]     
__________________________________________________________________________________________________
add_7 (Add)                     (None, 512, 24, 78)  0           block_4a_bn_2[0][0]              
                                                                 block_4a_bn_shortcut[0][0]       
__________________________________________________________________________________________________
block_4a_relu (Activation)      (None, 512, 24, 78)  0           add_7[0][0]                      
__________________________________________________________________________________________________
block_4b_conv_1 (Conv2D)        (None, 512, 24, 78)  2359808     block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_bn_1 (BatchNormalizati (None, 512, 24, 78)  2048        block_4b_conv_1[0][0]            
__________________________________________________________________________________________________
block_4b_relu_1 (Activation)    (None, 512, 24, 78)  0           block_4b_bn_1[0][0]              
__________________________________________________________________________________________________
block_4b_conv_2 (Conv2D)        (None, 512, 24, 78)  2359808     block_4b_relu_1[0][0]            
__________________________________________________________________________________________________
block_4b_bn_2 (BatchNormalizati (None, 512, 24, 78)  2048        block_4b_conv_2[0][0]            
__________________________________________________________________________________________________
add_8 (Add)                     (None, 512, 24, 78)  0           block_4b_bn_2[0][0]              
                                                                 block_4a_relu[0][0]              
__________________________________________________________________________________________________
block_4b_relu (Activation)      (None, 512, 24, 78)  0           add_8[0][0]                      
__________________________________________________________________________________________________
output_bbox (Conv2D)            (None, 20, 24, 78)   10260       block_4b_relu[0][0]              
__________________________________________________________________________________________________
output_cov (Conv2D)             (None, 5, 24, 78)    2565        block_4b_relu[0][0]              
==================================================================================================
Total params: 11,208,153
Trainable params: 11,198,425
Non-trainable params: 9,728
__________________________________________________________________________________________________
2023-01-03 10:17:07,868 [INFO] root: DetectNet V2 model built.
2023-01-03 10:17:07,868 [INFO] root: Building rasterizer.
2023-01-03 10:17:07,869 [INFO] root: Rasterizers built.
2023-01-03 10:17:07,887 [INFO] root: Building training graph.
2023-01-03 10:17:07,889 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False
2023-01-03 10:17:07,889 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False
2023-01-03 10:17:07,889 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0)
2023-01-03 10:17:07,889 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 8, io threads: 8, compute threads: 4, buffered batches: 4
2023-01-03 10:17:07,889 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 30, number of sources: 1, batch size per gpu: 4, steps: 4
WARNING:tensorflow:Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff03ae42cc0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff03ae42cc0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:07,916 [WARNING] tensorflow: Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff03ae42cc0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff03ae42cc0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:07,941 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.

2023-01-03 10:17:07,953 [WARNING] tensorflow: From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.

WARNING:tensorflow:Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f7fe7e584e0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f7fe7e584e0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:08,030 [WARNING] tensorflow: Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f7fe7e584e0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7f7fe7e584e0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:08,056 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
2023-01-03 10:17:08,379 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: True - shard 0 of 2
2023-01-03 10:17:08,390 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights:
2023-01-03 10:17:08,390 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000
WARNING:tensorflow:Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7fefdc6364e0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7fefdc6364e0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:08,421 [WARNING] tensorflow: Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7fefdc6364e0>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7fefdc6364e0>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:08,537 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: True - shard 1 of 2
2023-01-03 10:17:08,551 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights:
2023-01-03 10:17:08,551 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000
WARNING:tensorflow:Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f7f8c6f3278>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f7f8c6f3278>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:08,591 [WARNING] tensorflow: Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f7f8c6f3278>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7f7f8c6f3278>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:08,911 [INFO] __main__: Found 30 samples in training set
2023-01-03 10:17:08,917 [INFO] root: Rasterizing tensors.
2023-01-03 10:17:09,021 [INFO] __main__: Found 30 samples in training set
2023-01-03 10:17:09,021 [INFO] root: Rasterizing tensors.
2023-01-03 10:17:09,250 [INFO] root: Tensors rasterized.
2023-01-03 10:17:09,460 [INFO] root: Tensors rasterized.
2023-01-03 10:17:12,808 [INFO] root: Training graph built.
2023-01-03 10:17:12,808 [INFO] root: Running training loop.
2023-01-03 10:17:12,809 [INFO] __main__: Checkpoint interval: 10
2023-01-03 10:17:12,809 [INFO] __main__: Scalars logged at every 2 steps
2023-01-03 10:17:12,809 [INFO] __main__: Images logged at every 0 steps
2023-01-03 10:17:14,874 [INFO] root: Training graph built.
2023-01-03 10:17:14,874 [INFO] root: Building validation graph.
2023-01-03 10:17:14,875 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False
2023-01-03 10:17:14,875 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False
2023-01-03 10:17:14,876 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0)
2023-01-03 10:17:14,876 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 8, io threads: 16, compute threads: 8, buffered batches: 4
2023-01-03 10:17:14,876 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 3, number of sources: 1, batch size per gpu: 4, steps: 1
WARNING:tensorflow:Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff03ae57630>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff03ae57630>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:14,892 [WARNING] tensorflow: Entity <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff03ae57630>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method DriveNetTFRecordsParser.__call__ of <iva.detectnet_v2.dataloader.drivenet_dataloader.DriveNetTFRecordsParser object at 0x7ff03ae57630>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:14,938 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
2023-01-03 10:17:15,309 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: False - shard 0 of 1
2023-01-03 10:17:15,315 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights:
2023-01-03 10:17:15,316 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000
WARNING:tensorflow:Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7feeed614e48>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7feeed614e48>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:15,349 [WARNING] tensorflow: Entity <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7feeed614e48>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: Unable to locate the source code of <bound method Processor.__call__ of <modulus.blocks.data_loaders.multi_source_loader.processors.asset_loader.AssetLoader object at 0x7feeed614e48>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
2023-01-03 10:17:15,717 [INFO] __main__: Found 3 samples in validation set
2023-01-03 10:17:15,717 [INFO] root: Rasterizing tensors.
2023-01-03 10:17:15,952 [INFO] root: Tensors rasterized.
2023-01-03 10:17:16,569 [INFO] root: Validation graph built.
INFO:tensorflow:Graph was finalized.
2023-01-03 10:17:17,351 [INFO] tensorflow: Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpr4p88n4p/model.ckpt-8420
2023-01-03 10:17:18,093 [INFO] tensorflow: Restoring parameters from /tmp/tmpr4p88n4p/model.ckpt-8420
2023-01-03 10:17:19,001 [INFO] root: Running training loop.
2023-01-03 10:17:19,002 [INFO] __main__: Checkpoint interval: 10
2023-01-03 10:17:19,002 [INFO] __main__: Scalars logged at every 2 steps
2023-01-03 10:17:19,002 [INFO] __main__: Images logged at every 8 steps
INFO:tensorflow:Create CheckpointSaverHook.
2023-01-03 10:17:19,006 [INFO] tensorflow: Create CheckpointSaverHook.
INFO:tensorflow:Running local_init_op.
2023-01-03 10:17:20,618 [INFO] tensorflow: Running local_init_op.
INFO:tensorflow:Done running local_init_op.
2023-01-03 10:17:21,453 [INFO] tensorflow: Done running local_init_op.
INFO:tensorflow:Graph was finalized.
2023-01-03 10:17:25,303 [INFO] tensorflow: Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpi8b_l5yu/model.ckpt-8420
2023-01-03 10:17:25,946 [INFO] tensorflow: Restoring parameters from /tmp/tmpi8b_l5yu/model.ckpt-8420
INFO:tensorflow:Running local_init_op.
2023-01-03 10:17:28,584 [INFO] tensorflow: Running local_init_op.
INFO:tensorflow:Done running local_init_op.
2023-01-03 10:17:29,651 [INFO] tensorflow: Done running local_init_op.
2023-01-03 10:17:37,682 [INFO] root: Saving trained model.
Traceback (most recent call last):
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1365, in _do_call
    return fn(*args)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1350, in _run_fn
    target_list, run_metadata)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1443, in _call_tf_sessionrun
    run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
  (0) Invalid argument: assertion failed: [26.3125]
	 [[{{node Assert/AssertGuard/Assert}}]]
	 [[resnet18_nopool_bn_detectnet_v2/block_2a_bn_1/AssignMovingAvg/_4983]]
  (1) Invalid argument: assertion failed: [26.3125]
	 [[{{node Assert/AssertGuard/Assert}}]]
0 successful operations.
0 derived errors ignored.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "</usr/local/lib/python3.6/dist-packages/iva/detectnet_v2/scripts/train.py>", line 3, in <module>
  File "<frozen iva.detectnet_v2.scripts.train>", line 1022, in <module>
  File "<frozen iva.detectnet_v2.scripts.train>", line 1011, in <module>
  File "<decorator-gen-117>", line 2, in main
  File "<frozen iva.detectnet_v2.utilities.timer>", line 46, in wrapped_fn
  File "<frozen iva.detectnet_v2.scripts.train>", line 994, in main
  File "<frozen iva.detectnet_v2.scripts.train>", line 853, in run_experiment
  File "<frozen iva.detectnet_v2.scripts.train>", line 728, in train_gridbox
  File "<frozen iva.detectnet_v2.scripts.train>", line 200, in run_training_loop
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py", line 754, in run
    run_metadata=run_metadata)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py", line 1360, in run
    raise six.reraise(*original_exc_info)
  File "/usr/local/lib/python3.6/dist-packages/six.py", line 696, in reraise
    raise value
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py", line 1345, in run
    return self._sess.run(*args, **kwargs)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py", line 1418, in run
    run_metadata=run_metadata)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/monitored_session.py", line 1176, in run
    return self._sess.run(*args, **kwargs)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 956, in run
    run_metadata_ptr)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1180, in _run
    feed_dict_tensor, options, run_metadata)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1359, in _do_run
    run_metadata)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1384, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
  (0) Invalid argument: assertion failed: [26.3125]
	 [[node Assert/AssertGuard/Assert (defined at /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py:1748) ]]
	 [[resnet18_nopool_bn_detectnet_v2/block_2a_bn_1/AssignMovingAvg/_4983]]
  (1) Invalid argument: assertion failed: [26.3125]
	 [[node Assert/AssertGuard/Assert (defined at /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py:1748) ]]
0 successful operations.
0 derived errors ignored.

Original stack trace for 'Assert/AssertGuard/Assert':
  File "/usr/local/lib/python3.6/dist-packages/iva/detectnet_v2/scripts/train.py", line 3, in <module>
    __pyarmor_vax_001219__(__name__, __file__, b'\x50\x59\x41\x52\x4d\x4f\x52\x00\x00\x03\x06\x00\x33\x0d\x0d\x0a\x09\x34\xe0\x02\x00\x00\x00\x00\x01\x00\x00\x00\x40\x00\x00\x00\xd1\x6e\x00\x00\x00\x00\x00\x18\x3f\xe6\xad\x23\x89\xbd\x79\x65\x45\x26\xe7\x3e\xcc\xf7\x5e\x6e\x00\x00\x00\x00\x00\x00\x00\x00\x53\x27\x12\x14\x95\xeb\xf6\x04\x0c\xd9\x5e\x2f\xcc\xb0\x08\x49\x96\x1d\xce\x9d\x5b\x86\x32\xe7\x90\x21\xac\x3f\xc4\x6f\xf3\xd0\x4c\x20\x9d\xff\xd0\xc2\x23\x10\xf8\x6c\x19\xd4\x01\xff\x49\xb4\x3f\xb0\x87\xf8\...........................................\x30\xd1\x31\xf3\x06\x53\x5d\x08\x80\x1b\x6c\xb6\x2f\xa2\xe6\x05\xf7\xbb\x8f\xd4\x5d\x9c\xe4\xc7\x75\xf5\x53\x8a\x8d\x93\xe6\x9a\x43\x93\x64\x4e\xa4\xc0\xf5\x84\x0b\x44\xc3\xdf\x88\x37\x3a\x57\x81\x22\x67\x99\xad\x70\xde\xf7\x9f\x54\xc2\x40\xd8\xaf\xd4\x00\x5a\xd6\x8c\x94\x6e\x6d\x70\xc7\x41\x7a\xe2\xc8\xc5\xa0\x35\x21\xe4\xe8\x67\x8e\xcd\xaa\x01\x50\xf6\xc0\x7b\x41\x7a\xe9\x93\x69\xc1\xae\x33\xab\xa8\x8c\x8b\x8c\x40\x13\x17\x96\x5b\x6b\xaa\x58\xa7\x5c\x78\xaf\x3f\x74\x49\x55\x29\xb8\xf5\xdb\xf2\x7d\x11\xf0\xa6\x00\x47\xfa\x96\x8f\xe4\xba\xee\x9e\x47\xf3\x5a\x8f\xb6\xa3\x87', 2)
  File "<frozen iva.detectnet_v2.scripts.train>", line 1011, in <module>
  File "<decorator-gen-117>", line 2, in main
  File "<frozen iva.detectnet_v2.utilities.timer>", line 46, in wrapped_fn
  File "<frozen iva.detectnet_v2.scripts.train>", line 994, in main
  File "<frozen iva.detectnet_v2.scripts.train>", line 853, in run_experiment
  File "<frozen iva.detectnet_v2.scripts.train>", line 680, in train_gridbox
  File "<frozen iva.detectnet_v2.training.training_proto_utilities>", line 109, in build_learning_rate_schedule
  File "<frozen moduluspy.modulus.hooks.utils>", line 40, in get_softstart_annealing_learning_rate
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/util/tf_should_use.py", line 198, in wrapped
    return _add_should_use_warning(fn(*args, **kwargs))
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/control_flow_ops.py", line 173, in Assert
    guarded_assert = cond(condition, no_op, true_assert, name="AssertGuard")
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/util/deprecation.py", line 513, in new_func
    return func(*args, **kwargs)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/control_flow_ops.py", line 1235, in cond
    orig_res_f, res_f = context_f.BuildCondBranch(false_fn)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/control_flow_ops.py", line 1061, in BuildCondBranch
    original_result = fn()
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/control_flow_ops.py", line 171, in true_assert
    condition, data, summarize, name="Assert")
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/gen_logging_ops.py", line 74, in _assert
    name=name)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/op_def_library.py", line 794, in _apply_op_helper
    op_def=op_def)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/util/deprecation.py", line 513, in new_func
    return func(*args, **kwargs)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py", line 3357, in create_op
    attrs, op_def, compute_device)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py", line 3426, in _create_op_internal
    op_def=op_def)
  File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py", line 1748, in __init__
    self._traceback = tf_stack.extract_stack()

--------------------------------------------------------------------------
Primary job  terminated normally, but 1 process returned
a non-zero exit code. Per user-direction, the job has been aborted.
--------------------------------------------------------------------------
--------------------------------------------------------------------------
mpirun detected that one or more processes exited with non-zero status, thus causing
the job to be terminated. The first process to do so was:

  Process name: [[18732,1],1]
  Exit code:    1
--------------------------------------------------------------------------
Telemetry data couldn't be sent, but the command ran successfully.
[WARNING]: <urlopen error [Errno -2] Name or service not known>
Execution status: FAIL
2023-01-03 11:17:41,205 [INFO] tlt.components.docker_handler.docker_handler: Stopping container.

I have skipped the few characters inside the pyarmor_vax_001219(name, file, b’…',2) due to character limitation in the reply.

So, you are training with 30 images and meet below assertion error?
(0) Invalid argument: assertion failed: [26.3125]

Can you double check the images/labels? More, can you check if 26.2135 is one value of the label?

The labels are there. We solved the error by deleting the output folders created and reinitiating the process.

1 Like

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.