Here is the ONNX model info
[I] Loading model: /home/nvidia/yolov8-trt-test/Default-medication_box_Mask_Default/Instance_Segmentation5_meta_Tool1/Models/Model_2023_09_25/model_final.onnx
[I] ==== ONNX Model ====
Name: torch-jit-export | ONNX Opset: 12
---- 1 Graph Input(s) ----
{images [dtype=float32, shape=(1, 3, 480, 640)]}
---- 5 Graph Output(s) ----
{valid [dtype=int64, shape=('Castvalid_dim_0',)],
rois [dtype=float32, shape=('Gatherrois_dim_0', 4)],
scores [dtype=float32, shape=('Gatherscores_dim_0',)],
class_ids [dtype=int64, shape=('Gatherclass_ids_dim_0',)],
masks [dtype=float32, shape=('Reshapemasks_dim_0', 120, 160)]}
---- 219 Initializer(s) ----
---- 376 Node(s) ----
Here is the tensorrt model info
[I] Loading bytes from /home/nvidia/yolov8-trt-test/Default-medication_box_Mask_Default/Instance_Segmentation5_meta_Tool1/Models/Model_2023_09_25/model_final.onnx_b1_gpu0_fp32.engine
[I] ==== TensorRT Engine ====
Name: Unnamed Network 0 | Explicit Batch Engine
---- 1 Engine Input(s) ----
{images [dtype=float32, shape=(1, 3, 480, 640)]}
---- 5 Engine Output(s) ----
{valid [dtype=int32, shape=(-1,)],
rois [dtype=float32, shape=(-1, 4)],
scores [dtype=float32, shape=(-1,)],
class_ids [dtype=int32, shape=(-1,)],
masks [dtype=float32, shape=(-1, 120, 160)]}
---- Memory ----
Device Memory: 49400320 bytes
---- 1 Profile(s) (6 Tensor(s) Each) ----
- Profile: 0
Tensor: images (Input), Index: 0 | Shapes: min=(1, 3, 480, 640), opt=(1, 3, 480, 640), max=(1, 3, 480, 640)
Tensor: valid (Output), Index: 1 | Shape: (-1,)
Tensor: rois (Output), Index: 2 | Shape: (-1, 4)
Tensor: scores (Output), Index: 3 | Shape: (-1,)
Tensor: class_ids (Output), Index: 4 | Shape: (-1,)
Tensor: masks (Output), Index: 5 | Shape: (-1, 120, 160)
---- 415 Layer(s) ----