Description
When I convert my pretrained model to tensorrt int8 engine, I find that if the input shape is fixed, i.e.,
profile.set_shape(inp.name, min=(32, 3, 512, 512), opt=(32, 3, 512, 512), max=(32, 3, 512, 512))
, the performance drops dramatically comparing to the one generated with dynamic input shape:
profile.set_shape(inp.name, min=(16, 3, 512, 512), opt=(32, 3, 512, 512), max=(48, 3, 512, 512)).
I want to know is it normal?
Environment
TensorRT Version: 8.0.1.6
GPU Type: NVIDIA GeForce RTX 3060
Nvidia Driver Version: 11.4
CUDA Version: cuda_11.3.r11.3
CUDNN Version: 8.1.1
Operating System + Version: 16.04.6 LTS (GNU/Linux 4.4.0-142-generic x86_64)
Python Version (if applicable): 3.6
TensorFlow Version (if applicable):
PyTorch Version (if applicable): ‘1.10.2+cu113’
Baremetal or Container (if container which image + tag):