• Hardware Platform (Jetson / GPU) AGX Xavier
• DeepStream Version 6.2
• JetPack Version (valid for Jetson only) 5.1
• TensorRT Version 8.5.2.2
• Issue Type( questions, new requirements, bugs) Questions
Hello everyone and thank you for your help.
When I run nvdsanalytics.py for two video streams it takes several minutes to start the inference, attached below is the terminal output.
When I run it for 1 video stream it takes only about 20 sec to start.
Can this be improved, what is the reason for this?
Now playing...
1 : file:///home/.../zona_ti.mp4
2 : file:///home/.../salida_idi.mp4
Starting pipeline
gstnvtracker: Loading low-level lib at /opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
gstnvtracker: Batch processing is ON
gstnvtracker: Past frame output is ON
[NvMultiObjectTracker] Initialized
WARNING: [TRT]: Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors.
Deserialize yoloLayer plugin: yolo
0:00:04.460180181 3229 0x2c039c60 INFO nvinfer gstnvinfer.cpp:680:gst_nvinfer_logger:<primary-inference> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1909> [UID = 1]: deserialized trt engine from :/home/xavier/anterior/sources/deepstream_python_apps/apps/deepstream-yolo-TSK/model_b1_gpu0_fp32.engine
INFO: [Implicit Engine Info]: layers num: 5
0 INPUT kFLOAT data 3x640x640
1 OUTPUT kFLOAT num_detections 1
2 OUTPUT kFLOAT detection_boxes 8400x4
3 OUTPUT kFLOAT detection_scores 8400
4 OUTPUT kFLOAT detection_classes 8400
0:00:04.522164374 3229 0x2c039c60 WARN nvinfer gstnvinfer.cpp:677:gst_nvinfer_logger:<primary-inference> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::checkBackendParams() <nvdsinfer_context_impl.cpp:1841> [UID = 1]: Backend has maxBatchSize 1 whereas 2 has been requested
0:00:04.522256330 3229 0x2c039c60 WARN nvinfer gstnvinfer.cpp:677:gst_nvinfer_logger:<primary-inference> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:2018> [UID = 1]: deserialized backend context :/home/xavier/anterior/sources/deepstream_python_apps/apps/deepstream-yolo-TSK/model_b1_gpu0_fp32.engine failed to match config params, trying rebuild
0:00:04.533467044 3229 0x2c039c60 INFO nvinfer gstnvinfer.cpp:680:gst_nvinfer_logger:<primary-inference> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1923> [UID = 1]: Trying to create engine from model files
WARNING: [TRT]: The implicit batch dimension mode has been deprecated. Please create the network with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag whenever possible.
Loading pre-trained weights
Loading weights of yolov8n complete
Total weights read: 3192976
Building YOLO network
Layer Input Shape Output Shape WeightPtr
(0) conv_silu [3, 640, 640] [16, 320, 320] 496
(1) conv_silu [16, 320, 320] [32, 160, 160] 5232
(2) conv_silu [32, 160, 160] [32, 160, 160] 6384
(3) c2f_silu [32, 160, 160] [48, 160, 160] 11120
(4) conv_silu [48, 160, 160] [32, 160, 160] 12784
(5) conv_silu [32, 160, 160] [64, 80, 80] 31472
(6) conv_silu [64, 80, 80] [64, 80, 80] 35824
(7) c2f_silu [64, 80, 80] [128, 80, 80] 73200
(8) conv_silu [128, 80, 80] [64, 80, 80] 81648
(9) conv_silu [64, 80, 80] [128, 40, 40] 155888
(10) conv_silu [128, 40, 40] [128, 40, 40] 172784
(11) c2f_silu [128, 40, 40] [256, 40, 40] 321264
(12) conv_silu [256, 40, 40] [128, 40, 40] 354544
(13) conv_silu [128, 40, 40] [256, 20, 20] 650480
(14) conv_silu [256, 20, 20] [256, 20, 20] 717040
(15) c2f_silu [256, 20, 20] [384, 20, 20] 1012976
(16) conv_silu [384, 20, 20] [256, 20, 20] 1112304
(17) conv_silu [256, 20, 20] [128, 20, 20] 1145584
(18) maxpool [128, 20, 20] [128, 20, 20] -
(19) maxpool [128, 20, 20] [128, 20, 20] -
(20) maxpool [128, 20, 20] [128, 20, 20] -
(21) route: 17, 18, 19, 20 - [512, 20, 20] -
(22) conv_silu [512, 20, 20] [256, 20, 20] 1277680
(23) upsample [256, 20, 20] [256, 40, 40] -
(24) route: 23, 12 - [384, 40, 40] -
(25) conv_silu [384, 40, 40] [128, 40, 40] 1327344
(26) c2f_silu [128, 40, 40] [192, 40, 40] 1401584
(27) conv_silu [192, 40, 40] [128, 40, 40] 1426672
(28) upsample [128, 40, 40] [128, 80, 80] -
(29) route: 28, 8 - [192, 80, 80] -
(30) conv_silu [192, 80, 80] [64, 80, 80] 1439216
(31) c2f_silu [64, 80, 80] [96, 80, 80] 1457904
(32) conv_silu [96, 80, 80] [64, 80, 80] 1464304
(33) conv_silu [64, 80, 80] [64, 40, 40] 1501424
(34) route: 33, 27 - [192, 40, 40] -
(35) conv_silu [192, 40, 40] [128, 40, 40] 1526512
(36) c2f_silu [128, 40, 40] [192, 40, 40] 1600752
(37) conv_silu [192, 40, 40] [128, 40, 40] 1625840
(38) conv_silu [128, 40, 40] [128, 20, 20] 1773808
(39) route: 38, 22 - [384, 20, 20] -
(40) conv_silu [384, 20, 20] [256, 20, 20] 1873136
(41) c2f_silu [256, 20, 20] [384, 20, 20] 2169072
(42) conv_silu [384, 20, 20] [256, 20, 20] 2268400
(43) route: 32 - [64, 80, 80] -
(44) conv_silu [64, 80, 80] [80, 80, 80] 2314800
(45) conv_silu [80, 80, 80] [80, 80, 80] 2372720
(46) conv_linear [80, 80, 80] [80, 80, 80] 2379200
(47) route: 43 - [64, 80, 80] -
(48) conv_silu [64, 80, 80] [64, 80, 80] 2416320
(49) conv_silu [64, 80, 80] [64, 80, 80] 2453440
(50) conv_linear [64, 80, 80] [64, 80, 80] 2457600
(51) route: 50, 46 - [144, 80, 80] -
(52) shuffle [144, 80, 80] [144, 6400] -
(53) route: 37 - [128, 40, 40] -
(54) conv_silu [128, 40, 40] [80, 40, 40] 2550080
(55) conv_silu [80, 40, 40] [80, 40, 40] 2608000
(56) conv_linear [80, 40, 40] [80, 40, 40] 2614480
(57) route: 53 - [128, 40, 40] -
(58) conv_silu [128, 40, 40] [64, 40, 40] 2688464
(59) conv_silu [64, 40, 40] [64, 40, 40] 2725584
(60) conv_linear [64, 40, 40] [64, 40, 40] 2729744
(61) route: 60, 56 - [144, 40, 40] -
(62) shuffle [144, 40, 40] [144, 1600] -
(63) route: 42 - [256, 20, 20] -
(64) conv_silu [256, 20, 20] [80, 20, 20] 2914384
(65) conv_silu [80, 20, 20] [80, 20, 20] 2972304
(66) conv_linear [80, 20, 20] [80, 20, 20] 2978784
(67) route: 63 - [256, 20, 20] -
(68) conv_silu [256, 20, 20] [64, 20, 20] 3126496
(69) conv_silu [64, 20, 20] [64, 20, 20] 3163616
(70) conv_linear [64, 20, 20] [64, 20, 20] 3167776
(71) route: 70, 66 - [144, 20, 20] -
(72) shuffle [144, 20, 20] [144, 400] -
(73) route: 52, 62, 72 - [144, 8400] -
(74) detect_v8 [144, 8400] [8400, 84] 3192976
Output YOLO blob names:
detect_v8_75
Total number of YOLO layers: 299
Building YOLO network complete
Building the TensorRT Engine
NOTE: Number of classes mismatch, make sure to set num-detected-classes=80 in config_infer file
NOTE: letter_box is set in cfg file, make sure to set maintain-aspect-ratio=1 in config_infer file to get better accuracy