I’m currently just trying to run the cfg/weights csresnext50-panet-spp-original-optimal as made available by GitHub - AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )
My first impression is, that it’s not enough to simply create new deepstream_app_config.txt and config_infer_primary.txt files, but also new additions to trt_utils.cpp are needed?
Here are my configs+output when trying them (I renamed the cfg+weights to yolov3-cs.cfg/weights due to the checks made on the filenames)
config_infer_primary_cs.txt:
[property]
gpu-id=0
net-scale-factor=1
#0=RGB, 1=BGR
model-color-format=0
custom-network-config=yolov3-cs.cfg
model-file=yolov3-cs.weights
#model-engine-file=model-engine-file=/opt/nvidia/deepstream/deepstream-4.0/sources/objectDetector_Yolo/cs_model_b1_fp32.engine
labelfile-path=labels.txt
int8-calib-file=yolov3-calibration.table.trt5.1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
num-detected-classes=80
gie-unique-id=1
is-classifier=0
maintain-aspect-ratio=1
parse-bbox-func-name=NvDsInferParseCustomYoloV3
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
deepstream_app_config_cs.txt:
[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5
#gie-kitti-output-dir=streamscl
[tiled-display]
enable=1
rows=1
columns=1
width=1280
height=720
gpu-id=0
#(0): nvbuf-mem-default - Default memory allocated, specific to particular platform
#(1): nvbuf-mem-cuda-pinned - Allocate Pinned/Host cuda memory, applicable for Tesla
#(2): nvbuf-mem-cuda-device - Allocate Device cuda memory, applicable for Tesla
#(3): nvbuf-mem-cuda-unified - Allocate Unified cuda memory, applicable for Tesla
#(4): nvbuf-mem-surface-array - Allocate Surface Array memory, applicable for Jetson
nvbuf-memory-type=0
[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=1
camera-width=1280
camera-height=720
camera-fps-n=30
#camera-fps-d=1
#camera-csi-sensor-id=0
camera-v4l2-dev-node=6
#uri=file://../../samples/streams/sample_1080p_h264.mp4
#num-sources=1
gpu-id=0
# (0): memtype_device - Memory type Device
# (1): memtype_pinned - Memory type Host Pinned
# (2): memtype_unified - Memory type Unified
cudadec-memtype=0
[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=2
sync=0
source-id=0
gpu-id=0
nvbuf-memory-type=0
[osd]
enable=1
gpu-id=0
border-width=1
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0
nvbuf-memory-type=0
[streammux]
gpu-id=0
##Boolean property to inform muxer that sources are live
live-source=0
batch-size=1
##time out in usec, to wait after the first buffer is available
##to push the batch even if the complete batch is not formed
batched-push-timeout=40000
## Set muxer output width and height
width=1280
height=720
##Enable to maintain aspect ratio wrt source, and allow black borders, works
##along with width, height properties
enable-padding=0
nvbuf-memory-type=0
# config-file property is mandatory for any gie section.
# Other properties are optional and if set will override the properties set in
# the infer config file.
[primary-gie]
enable=1
gpu-id=0
#model-engine-file=/opt/nvidia/deepstream/deepstream-4.0/sources/objectDetector_Yolo/cs_model_b1_fp32.engine
labelfile-path=labels.txt
batch-size=1
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
#interval=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_cs.txt
[tests]
file-loop=0
“deepstream-app -c deepstream_app_config_cs.txt”
(deepstream-app:2104): GStreamer-CRITICAL **: 15:35:43.108: passed '0' as denominator for `GstFraction'
(deepstream-app:2104): GStreamer-WARNING **: 15:35:43.109: Name 'src_cap_filter' is not unique in bin 'src_sub_bin0', not adding
Creating LL OSD context new
0:00:00.259336218 2104 0x7f75240022c0 INFO nvinfer gstnvinfer.cpp:519:gst_nvinfer_logger:<primary_gie_classifier> NvDsInferContext[UID 1]:initialize(): Trying to create engine from model files
Loading pre-trained weights...
Loading complete!
Total Number of weights read : 57030845
layer inp_size out_size weightPtr
(1) conv-bn-leaky 3 x 608 x 608 64 x 304 x 304 9664
(2) maxpool 64 x 304 x 304 64 x 152 x 152 9664
(3) conv-bn-leaky 64 x 152 x 152 128 x 152 x 152 18368
(4) route - 64 x 152 x 152 18368
(5) conv-bn-leaky 64 x 152 x 152 64 x 152 x 152 22720
(6) conv-bn-leaky 64 x 152 x 152 128 x 152 x 152 31424
(7) conv-bn-leaky 128 x 152 x 152 128 x 152 x 152 179392
deepstream-app: trt_utils.cpp:235: nvinfer1::ILayer* netAddConvBNLeaky(int, std::map<std::__cxx11::basic_string<char>, std::__cxx11::basic_string<char> >&, std::vector<float>&, std::vector<nvinfer1::Weights>&, int&, int&, nvinfer1::ITensor*, nvinfer1::INetworkDefinition*): Assertion `block.at("activation") == "leaky"' failed.
Aborted (core dumped)