same error
Please provide complete information as applicable to your setup.
•Hardware Platform (Jetson / GPU) - Xavier NX
• DeepStream Version - 5.0**
• JetPack Version (valid for Jetson only) - 4.4
• TensorRT Version - 7.0**
• NVIDIA GPU Driver Version (valid for GPU only)
I use same yolov3.cfg in jetson nano deepstream 4.0 is all right
my config :
[property]
gpu-id=0
net-scale-factor=1
#0=RGB, 1=BGR
model-color-format=0
custom-network-config=yolov3.cfg
model-file=yolov3.weights
#model-engine-file=yolov3_b1_gpu0_int8.engine
labelfile-path=labels.txt
int8-calib-file=yolov3-calibration.table.trt7.0
0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
num-detected-classes=80
gie-unique-id=1
network-type=0
is-classifier=0
0=Group Rectangles, 1=DBSCAN, 2=NMS, 3= DBSCAN+NMS Hybrid, 4 = None(No clustering)
cluster-mode=2
maintain-aspect-ratio=1
parse-bbox-func-name=NvDsInferParseCustomYoloV3
custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so
engine-create-func-name=NvDsInferYoloCudaEngineGet
#scaling-filter=0
#scaling-compute-hw=0
[class-attrs-all]
nms-iou-threshold=0.5
threshold=0.7
deepstream config:
[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5
#gie-kitti-output-dir=streamscl
[tiled-display]
enable=1
rows=1
columns=1
width=1280
height=720
gpu-id=0
#(0): nvbuf-mem-default - Default memory allocated, specific to particular platform
#(1): nvbuf-mem-cuda-pinned - Allocate Pinned/Host cuda memory, applicable for Tesla
#(2): nvbuf-mem-cuda-device - Allocate Device cuda memory, applicable for Tesla
#(3): nvbuf-mem-cuda-unified - Allocate Unified cuda memory, applicable for Tesla
#(4): nvbuf-mem-surface-array - Allocate Surface Array memory, applicable for Jetson
nvbuf-memory-type=0
[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=2
uri=file:///home/gjtjxnoone/projects/hat_data/20200618T061000Z_20200618T061500Z_20200628_140641.mp4
num-sources=1
gpu-id=0
(0): memtype_device - Memory type Device
(1): memtype_pinned - Memory type Host Pinned
(2): memtype_unified - Memory type Unified
cudadec-memtype=0
[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=2
container=1
#1=h264 2=h265
codec=1
sync=0
source-id=0
gpu-id=0
nvbuf-memory-type=0
[osd]
enable=1
gpu-id=0
border-width=1
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0
nvbuf-memory-type=0
[streammux]
gpu-id=0
##Boolean property to inform muxer that sources are live
live-source=0
batch-size=1
##time out in usec, to wait after the first buffer is available
##to push the batch even if the complete batch is not formed
batched-push-timeout=40000
Set muxer output width and height
width=1920
height=1080
##Enable to maintain aspect ratio wrt source, and allow black borders, works
##along with width, height properties
enable-padding=0
nvbuf-memory-type=0
config-file property is mandatory for any gie section.
Other properties are optional and if set will override the properties set in
the infer config file.
[primary-gie]
enable=1
gpu-id=0
#model-engine-file=model_b1_gpu0_int8.engine
labelfile-path=labels.txt
batch-size=1
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
interval=2
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yoloV3.txt
[tracker]
enable=1
tracker-width=640
tracker-height=384
ll-lib-file=/opt/nvidia/deepstream/deepstream-5.0/lib/libnvds_mot_klt.so
[tests]
file-loop=0
the yolov3.cfg and weights is official, and netw,netH is 416,but in jetson xavier nx the rect is wrong
any help? Thanks
@mchi