objectDetector_YoloV3 with Deepstream-app Random Bounding Boxes

Hi,

I have tried deepstream-app and deepstream-yolo-app and they are running successfully. To get a better understanding of plugins I tried objectDetector_YoloV3 samples from ‘https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps/tree/master/yolo/samples/objectDetector_YoloV3’. I used the engine from deepstream-yolo-app and it generates random bounding boxes. Cannot figure out how to fix this. Hope I can get help from Forum.

System: Ubuntu 16.04
Cuda 10.0 TensorRT 5.0.2 Opencv3.4.0
DeepStream3.0 for Tesla
RTX2080 with i9-9900k

config_infer_primary_YoloV3.txt:

[property]
gpu-id=0
net-scale-factor=1

0=RGB, 1=BGR

model-color-format=0
model-engine-file=…/…/data/yolov3-kFLOAT-kGPU-batch1.engine
batch-size=1

0=FP32, 1=INT8, 2=FP16 mode

network-mode=0
num-detected-classes=80
gie-unique-id=1
parse-func=0
is-classifier=0
parse-bbox-func-name=NvDsInferParseCustomYoloV3
custom-lib-path=nvdsinfer_custom_impl_YoloV3/build/libnvdsinfer_custom_impl_YoloV3.so

deepstream_app_config_yoloV3.txt:

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5

gie-kitti-output-dir=streamscl

[tiled-display]
enable=1
rows=1
columns=1
width=1280
height=720
gpu-id=0

[source0]
enable=1

Type - 1=CameraV4L2 2=URI 3=MultiURI.

type=3
num-sources=1
uri=file://black.mp4
gpu-id=0

[streammux]
gpu-id=0
batch-size=1
batched-push-timeout=-1

Set muxer output width and height.

width=1280
height=720
cuda-memory-type=1

[sink0]
enable=1

Type - 1=FakeSink 2=EglSink 3=File.

type=2
sync=1
source-id=0
gpu-id=0

[osd]
enable=1
gpu-id=0
border-width=3
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Arial
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0

[primary-gie]
enable=1
gpu-id=0
batch-size=1
gie-unique-id=1
interval=0
labelfile-path=labels.txt
model-engine-file=…/…/data/yolov3-kFLOAT-kGPU-batch1.engine
config-file=config_infer_primary_YoloV3.txt

The error may be related to network input size mismatch. Please make sure the size used in the bounding box parser is same as what was used in the config file used to create the engine. See answer below

https://devtalk.nvidia.com/default/topic/1048278/deepstream-for-tesla/deepstream-app-crashed-due-to-opencv-assertion/post/5320815/#5320815

Thank you CJR. This works