Hi all.
I created a tensorrt engine from a pytorch model using onnx intermediate representation. The model is OSNet, which has two versions, osnet_x1_0 which is the whole model and x0_25 which has all the filter channels reduced by 4 times(no of channels / 4). I created separate engines for both the models,batches of sizes 1, 5 and 10 and precisions of fp16 and fp32. I have given the inference times for each batch in milliseconds.For batch size of 1, there is no difference between osnetx1_0 and osnetx0_25 and also between fp16 and fp32, which is surprising. Request somebody to explain it.
Device running on: Jetson Tx2
OS: Ubuntu 16.04
TensorRT version: 6
from __future__ import absolute_import
from __future__ import division
__all__ = ['osnet_x1_0', 'osnet_x0_75', 'osnet_x0_5', 'osnet_x0_25', 'osnet_ibn_x1_0']
import torch
from torch import nn
from torch.nn import functional as F
#import torchvision
pretrained_urls = {
'osnet_x1_0': 'https://drive.google.com/uc?id=1LaG1EJpHrxdAxKnSCJ_i0u-nbxSAeiFY',
'osnet_x0_75': 'https://drive.google.com/uc?id=1uwA9fElHOk3ZogwbeY5GkLI6QPTX70Hq',
'osnet_x0_5': 'https://drive.google.com/uc?id=16DGLbZukvVYgINws8u8deSaOqjybZ83i',
'osnet_x0_25': 'https://drive.google.com/uc?id=1rb8UN5ZzPKRc_xvtHlyDh-cSz88YX9hs',
'osnet_ibn_x1_0': 'https://drive.google.com/uc?id=1sr90V6irlYYDd4_4ISU2iruoRG8J__6l'
}
##########
# Basic layers
##########
class ConvLayer(nn.Module):
"""Convolution layer (conv + bn + relu)."""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, IN=False):
super(ConvLayer, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride,
padding=padding, bias=False, groups=groups)
if IN:
self.bn = nn.InstanceNorm2d(out_channels, affine=True)
else:
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class Conv1x1(nn.Module):
"""1x1 convolution + bn + relu."""
def __init__(self, in_channels, out_channels, stride=1, groups=1):
super(Conv1x1, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 1, stride=stride, padding=0,
bias=False, groups=groups)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class Conv1x1Linear(nn.Module):
"""1x1 convolution + bn (w/o non-linearity)."""
def __init__(self, in_channels, out_channels, stride=1):
super(Conv1x1Linear, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 1, stride=stride, padding=0, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class Conv3x3(nn.Module):
"""3x3 convolution + bn + relu."""
def __init__(self, in_channels, out_channels, stride=1, groups=1):
super(Conv3x3, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 3, stride=stride, padding=1,
bias=False, groups=groups)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class LightConv3x3(nn.Module):
"""Lightweight 3x3 convolution.
1x1 (linear) + dw 3x3 (nonlinear).
"""
def __init__(self, in_channels, out_channels):
super(LightConv3x3, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 1, stride=1, padding=0, bias=False)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, stride=1, padding=1, bias=False, groups=out_channels)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.bn(x)
x = self.relu(x)
return x
##########
# Building blocks for omni-scale feature learning
##########
class ChannelGate(nn.Module):
"""A mini-network that generates channel-wise gates conditioned on input tensor."""
def __init__(self, in_channels, num_gates=None, return_gates=False,
gate_activation='sigmoid', reduction=16, layer_norm=False):
super(ChannelGate, self).__init__()
if num_gates is None:
num_gates = in_channels
self.return_gates = return_gates
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Conv2d(in_channels, in_channels//reduction, kernel_size=1, bias=True, padding=0)
self.norm1 = None
if layer_norm:
self.norm1 = nn.LayerNorm((in_channels//reduction, 1, 1))
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(in_channels//reduction, num_gates, kernel_size=1, bias=True, padding=0)
if gate_activation == 'sigmoid':
self.gate_activation = nn.Sigmoid()
elif gate_activation == 'relu':
self.gate_activation = nn.ReLU(inplace=True)
elif gate_activation == 'linear':
self.gate_activation = None
else:
raise RuntimeError("Unknown gate activation: {}".format(gate_activation))
def forward(self, x):
input = x
x = self.global_avgpool(x)
x = self.fc1(x)
if self.norm1 is not None:
x = self.norm1(x)
x = self.relu(x)
x = self.fc2(x)
if self.gate_activation is not None:
x = self.gate_activation(x)
if self.return_gates:
return x
return input * x
class OSBlock(nn.Module):
"""Omni-scale feature learning block."""
def __init__(self, in_channels, out_channels, IN=False, bottleneck_reduction=4, **kwargs):
super(OSBlock, self).__init__()
mid_channels = out_channels // bottleneck_reduction
self.conv1 = Conv1x1(in_channels, mid_channels)
self.conv2a = LightConv3x3(mid_channels, mid_channels)
self.conv2b = nn.Sequential(
LightConv3x3(mid_channels, mid_channels),
LightConv3x3(mid_channels, mid_channels),
)
self.conv2c = nn.Sequential(
LightConv3x3(mid_channels, mid_channels),
LightConv3x3(mid_channels, mid_channels),
LightConv3x3(mid_channels, mid_channels),
)
self.conv2d = nn.Sequential(
LightConv3x3(mid_channels, mid_channels),
LightConv3x3(mid_channels, mid_channels),
LightConv3x3(mid_channels, mid_channels),
LightConv3x3(mid_channels, mid_channels),
)
self.gate = ChannelGate(mid_channels)
self.conv3 = Conv1x1Linear(mid_channels, out_channels)
self.downsample = None
if in_channels != out_channels:
self.downsample = Conv1x1Linear(in_channels, out_channels)
self.IN = None
if IN:
self.IN = nn.InstanceNorm2d(out_channels, affine=True)
def forward(self, x):
identity = x
x1 = self.conv1(x)
x2a = self.conv2a(x1)
x2b = self.conv2b(x1)
x2c = self.conv2c(x1)
x2d = self.conv2d(x1)
x2 = self.gate(x2a) + self.gate(x2b) + self.gate(x2c) + self.gate(x2d)
x3 = self.conv3(x2)
if self.downsample is not None:
identity = self.downsample(identity)
out = x3 + identity
if self.IN is not None:
out = self.IN(out)
return F.relu(out)
##########
# Network architecture
##########
class OSNet(nn.Module):
"""Omni-Scale Network.
Reference:
- Zhou et al. Omni-Scale Feature Learning for Person Re-Identification. ICCV, 2019.
"""
def __init__(self, num_classes, blocks, layers, channels, feature_dim=512, loss='softmax', IN=False, **kwargs):
super(OSNet, self).__init__()
num_blocks = len(blocks)
assert num_blocks == len(layers)
assert num_blocks == len(channels) - 1
self.loss = loss
# convolutional backbone
self.conv1 = ConvLayer(3, channels[0], 7, stride=2, padding=3, IN=IN)
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.conv2 = self._make_layer(blocks[0], layers[0], channels[0], channels[1], reduce_spatial_size=True, IN=IN)
self.conv3 = self._make_layer(blocks[1], layers[1], channels[1], channels[2], reduce_spatial_size=True)
self.conv4 = self._make_layer(blocks[2], layers[2], channels[2], channels[3], reduce_spatial_size=False)
self.conv5 = Conv1x1(channels[3], channels[3])
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
# fully connected layer
self.fc = self._construct_fc_layer(feature_dim, channels[3], dropout_p=None)
# identity classification layer
self.classifier = nn.Linear(self.feature_dim, num_classes)
self._init_params()
def _make_layer(self, block, layer, in_channels, out_channels, reduce_spatial_size, IN=False):
layers = []
layers.append(block(in_channels, out_channels, IN=IN))
for i in range(1, layer):
layers.append(block(out_channels, out_channels, IN=IN))
if reduce_spatial_size:
layers.append(
nn.Sequential(
Conv1x1(out_channels, out_channels),
nn.AvgPool2d(2, stride=2)
)
)
return nn.Sequential(*layers)
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
if fc_dims is None or fc_dims<0:
self.feature_dim = input_dim
return None
if isinstance(fc_dims, int):
fc_dims = [fc_dims]
layers = []
for dim in fc_dims:
layers.append(nn.Linear(input_dim, dim))
layers.append(nn.BatchNorm1d(dim))
layers.append(nn.ReLU(inplace=True))
if dropout_p is not None:
layers.append(nn.Dropout(p=dropout_p))
input_dim = dim
self.feature_dim = fc_dims[-1]
return nn.Sequential(*layers)
def _init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def featuremaps(self, x):
x = self.conv1(x)
x = self.maxpool(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
return x
def forward(self, x, return_featuremaps=False):
x = self.featuremaps(x)
if return_featuremaps:
return x
v = self.global_avgpool(x)
#v = v.view(v.size(0), -1)
v = v.view(9, 512)
if self.fc is not None:
v = self.fc(v)
if not self.training:
return v
# y = self.classifier(v)
# if self.loss == 'softmax':
# return v,y
# elif self.loss == 'triplet':
# return v,y
# else:
# raise KeyError("Unsupported loss: {}".format(self.loss))
def init_pretrained_weights(model, key=''):
"""Initializes model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
import os
import errno
import gdown
from collections import OrderedDict
def _get_torch_home():
ENV_TORCH_HOME = 'TORCH_HOME'
ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
DEFAULT_CACHE_DIR = '~/.cache'
torch_home = os.path.expanduser(
os.getenv(ENV_TORCH_HOME,
os.path.join(os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch')))
return torch_home
torch_home = _get_torch_home()
model_dir = os.path.join(torch_home, 'checkpoints')
try:
os.makedirs(model_dir)
except OSError as e:
if e.errno == errno.EEXIST:
# Directory already exists, ignore.
pass
else:
# Unexpected OSError, re-raise.
raise
filename = key + '_imagenet.pth'
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
gdown.download(pretrained_urls[key], cached_file, quiet=False)
state_dict = torch.load(cached_file)
model_dict = model.state_dict()
new_state_dict = OrderedDict()
matched_layers, discarded_layers = [], []
for k, v in state_dict.items():
if k.startswith('module.'):
k = k[7:] # discard module.
if k in model_dict and model_dict[k].size() == v.size():
new_state_dict[k] = v
matched_layers.append(k)
model_dict.update(new_state_dict)
model.load_state_dict(model_dict)
if len(matched_layers) == 0:
warnings.warn(
'The pretrained weights from "{}" cannot be loaded, '
'please check the key names manually '
'(** ignored and continue **)'.format(cached_file))
else:
print('Successfully loaded imagenet pretrained weights from "{}"'.format(cached_file))
if len(discarded_layers) > 0:
print('** The following layers are discarded '
'due to unmatched keys or layer size: {}'.format(discarded_layers))
##########
# Instantiation
##########
def osnet_x1_0(num_classes=1000, pretrained=True, loss='softmax', **kwargs):
# standard size (width x1.0)
model = OSNet(num_classes, blocks=[OSBlock, OSBlock, OSBlock], layers=[2, 2, 2],
channels=[64, 256, 384, 512], loss=loss, **kwargs)
if pretrained:
init_pretrained_weights(model, key='osnet_x1_0')
return model
def osnet_x0_75(num_classes=1000, pretrained=True, loss='softmax', **kwargs):
# medium size (width x0.75)
model = OSNet(num_classes, blocks=[OSBlock, OSBlock, OSBlock], layers=[2, 2, 2],
channels=[48, 192, 288, 384], loss=loss, **kwargs)
if pretrained:
init_pretrained_weights(model, key='osnet_x0_75')
return model
def osnet_x0_5(num_classes=1000, pretrained=True, loss='softmax', **kwargs):
# tiny size (width x0.5)
model = OSNet(num_classes, blocks=[OSBlock, OSBlock, OSBlock], layers=[2, 2, 2],
channels=[32, 128, 192, 256], loss=loss, **kwargs)
if pretrained:
init_pretrained_weights(model, key='osnet_x0_5')
return model
def osnet_x0_25(num_classes=1000, pretrained=True, loss='softmax', **kwargs):
# very tiny size (width x0.25)
model = OSNet(num_classes, blocks=[OSBlock, OSBlock, OSBlock], layers=[2, 2, 2],
channels=[16, 64, 96, 128], loss=loss, **kwargs)
if pretrained:
init_pretrained_weights(model, key='osnet_x0_25')
return model
def osnet_ibn_x1_0(num_classes=1000, pretrained=True, loss='softmax', **kwargs):
# standard size (width x1.0) + IBN layer
# Ref: Pan et al. Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net. ECCV, 2018.
model = OSNet(num_classes, blocks=[OSBlock, OSBlock, OSBlock], layers=[2, 2, 2],
channels=[64, 256, 384, 512], loss=loss, IN=True, **kwargs)
if pretrained:
init_pretrained_weights(model, key='osnet_ibn_x1_0')
return model
The inference code is:
import sys
import os
import trt_common as common
import cv2
import numpy as np
import datetime
import time
import traceback
import tensorrt as trt
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
import pycuda.driver as cuda
import pycuda.autoinit
engine_file_path = "/datadrive1/nafisa/reid/models/exp_x1_0_1_fp32.engine"
datadir = "/datadrive1/nafisa/reid/data/market/bounding_box_test"
def get_engine(engine_file_path=""):
"""Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it."""
if os.path.exists(engine_file_path):
# If a serialized engine exists, use it instead of building an engine.
print("Reading engine from file {}".format(engine_file_path))
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
else:
print("Engine not found")
return
def get_images(datadir, dtype, batch_size):
if(os.path.exists(datadir)):
imgpathlist = os.listdir(datadir)
imgpathlistlen = len(imgpathlist)
c, h, w = 3,256,128
for i in range(0,imgpathlistlen,batch_size):
batches= []
for j in range(0,batch_size,1):
if((i+j<imgpathlistlen) and os.path.exists(imgpathlist[i+j])):
img = cv2.imread(os.path.join(datadir,imgpathlist[i+j]))
img = cv2.resize(img,(128,256))
img = np.asarray(img)
img = img/255.0
img = (img - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])
img = img.transpose((2, 0, 1)).reshape((c, h, w))
#img = img.reshape((c, h, w))
if(dtype == "fp32"):
img = img.astype("float32")
elif(dtype== "fp16"):
img = img.astype("fp16")
else:
img = img.astype("int8")
batches.append(img)
len1 = len(batches)
batches =np.array(batches)
yield batches
else:
print("Data directory not found!")
yield None
engine = get_engine(engine_file_path)
context = engine.create_execution_context()
main_batch_size_user = 1
if __name__ == "__main__":
inference_time_list = []
trt_outputs = []
output_shapes = [(main_batch_size_user, 512)]
inputs, outputs, bindings, stream = common.allocate_buffers(engine)
count = 0
batches = get_images(datadir, "fp32", main_batch_size_user)
time_infer_mean = time_pre_mean= 0.0
for batch in batches:
t4 = time.time()
count+=1
print("Iterations {}".format(count))
inputs[0].host = batch
t2 = time.time()
for i in range(100):
trt_outputs = common.do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream,batch_size=main_batch_size_user)
t3 = time.time()
infer_time = t3-t2
inference_time_list.append(infer_time)
if(count>200):
time_pre_mean = (time_pre_mean * (count-201) + (t4-t5))/(count-200)
time_infer_mean = (time_infer_mean * (count-201) + (t3-t2))/(count-200)
print("Time prep mean {}".format(time_pre_mean))
print("Time infer mean {}".format(time_infer_mean))
print("Time infer {}".format(t3-t2))
if(count==300):
break
t5 = time.time()
outputs = [output.reshape(shape) for output, shape in zip(trt_outputs, output_shapes)]
#nparray = np.array(outputs[0])
#np.save('models/trt_output_fp16.npy', nparray)
print("Done Dana Done!")
total_avg_time = sum(inference_time_list)/len(inference_time_list)
last_iters_time = sum(inference_time_list[200:])/len(inference_time_list[200:])
print("total_average:{}".format(total_avg_time))
print("last_iters_average:{}".format(last_iters_time))
The timings reported are of time_infer_mean for over 100 iterations taken after ignoring the first 200 iterations.
Link to the spreadsheet with timings: