Hello all,
when using the TLT training with SSD model, i have loaded my own pictures and annotate with kitti format.
my my_ssd_train_resnet18_kitti.txt is:
Summary
random_seed: 42
ssd_config {
aspect_ratios_global: “[1.0, 2.0, 0.5, 3.0, 0.33]”
scales: “[0.05, 0.1, 0.25, 0.4, 0.55, 0.7, 0.85]”
two_boxes_for_ar1: true
clip_boxes: false
loss_loc_weight: 1.0
focal_loss_alpha: 0.25
focal_loss_gamma: 2.0
variances: “[0.1, 0.1, 0.2, 0.2]”
arch: “resnet”
nlayers: 18
freeze_bn: false
freeze_blocks: 0
}
training_config {
batch_size_per_gpu: 8
num_epochs: 80
enable_qat: false
learning_rate {
soft_start_annealing_schedule {
min_learning_rate: 5e-5
max_learning_rate: 2e-2
soft_start: 0.15
annealing: 0.8
}
}
regularizer {
type: L1
weight: 3e-5
}
}
eval_config {
validation_period_during_training: 10
average_precision_mode: SAMPLE
batch_size: 8
matching_iou_threshold: 0.5
}
nms_config {
confidence_threshold: 0.01
clustering_iou_threshold: 0.6
top_k: 200
}
augmentation_config {
preprocessing {
output_image_width: 910
output_image_height: 512
output_image_channel: 3
crop_right: 910
crop_bottom: 512
min_bbox_width: 1.0
min_bbox_height: 1.0
}
spatial_augmentation {
hflip_probability: 0.5
vflip_probability: 0.0
zoom_min: 0.7
zoom_max: 1.8
translate_max_x: 8.0
translate_max_y: 8.0
}
color_augmentation {
hue_rotation_max: 25.0
saturation_shift_max: 0.20000000298
contrast_scale_max: 0.10000000149
contrast_center: 0.5
}
}
dataset_config {
data_sources: {
tfrecords_path: “/workspace/tlt-experiments/data/rackets_v04_tlt_H32_910_512/tfrecords/kitti_trainval/kitti_trainval*”
image_directory_path: “/workspace/tlt-experiments/data/rackets_v04_tlt_H32_910_512/training”
}
image_extension: “jpeg”
target_class_mapping {
key: “BLACK_ARTENGO”
value: “BLACK_ARTENGO”
}
target_class_mapping {
key: “BLUE_ARTENGO”
value: “BLUE_ARTENGO”
}
target_class_mapping {
key: “RED_KUIKMA”
value: “RED_KUIKMA”
}
validation_fold: 0
}
the TLT-training results in AP: 0 for all my 3 classes:
Summary
To run with multigpu, please change --gpus based on the number of available GPUs in your machine.
Using TensorFlow backend.
2020-08-26 11:24:01.506089: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2020-08-26 11:24:05.412774: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-08-26 11:24:05.437956: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Quadro M4000 major: 5 minor: 2 memoryClockRate(GHz): 0.7725
pciBusID: 0000:03:00.0
2020-08-26 11:24:05.438042: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2020-08-26 11:24:05.440499: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
2020-08-26 11:24:05.442646: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0
2020-08-26 11:24:05.443244: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0
2020-08-26 11:24:05.446116: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
2020-08-26 11:24:05.448268: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0
2020-08-26 11:24:05.455031: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-08-26 11:24:05.456931: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-08-26 11:24:05.457011: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2020-08-26 11:24:06.022616: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-08-26 11:24:06.022698: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2020-08-26 11:24:06.022712: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2020-08-26 11:24:06.024796: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6329 MB memory) → physical GPU (device: 0, name: Quadro M4000, pci bus id: 0000:03:00.0, compute capability: 5.2)
2020-08-26 11:24:06,031 [INFO] /usr/local/lib/python3.6/dist-packages/iva/ssd/utils/spec_loader.pyc: Merging specification from /workspace/examples/ssd/specs/my_ssd_train_resnet18_kitti.txt
2020-08-26 11:24:06,042 [INFO] iva.ssd.scripts.train: Loading pretrained weights. This may take a while…
2020-08-26 11:24:06,236 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False
2020-08-26 11:24:06,236 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False
2020-08-26 11:24:06,236 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0)
2020-08-26 11:24:06,236 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 56, io threads: 112, compute threads: 56, buffered batches: 4
2020-08-26 11:24:06,236 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 288, number of sources: 1, batch size per gpu: 8, steps: 36
2020-08-26 11:24:06,412 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
2020-08-26 11:24:06.465026: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Quadro M4000 major: 5 minor: 2 memoryClockRate(GHz): 0.7725
pciBusID: 0000:03:00.0
2020-08-26 11:24:06.465084: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2020-08-26 11:24:06.465133: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
2020-08-26 11:24:06.465177: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0
2020-08-26 11:24:06.465219: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0
2020-08-26 11:24:06.465262: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
2020-08-26 11:24:06.465305: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0
2020-08-26 11:24:06.465348: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-08-26 11:24:06.466566: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-08-26 11:24:06,819 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: True - shard 0 of 1
2020-08-26 11:24:06,829 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights:
2020-08-26 11:24:06,829 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000
2020-08-26 11:25:08,536 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Serial augmentation enabled = False
2020-08-26 11:25:08,537 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Pseudo sharding enabled = False
2020-08-26 11:25:08,537 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: Max Image Dimensions (all sources): (0, 0)
2020-08-26 11:25:08,537 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: number of cpus: 56, io threads: 112, compute threads: 56, buffered batches: 4
2020-08-26 11:25:08,537 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: total dataset size 46, number of sources: 1, batch size per gpu: 8, steps: 6
2020-08-26 11:25:08,611 [INFO] iva.detectnet_v2.dataloader.default_dataloader: Bounding box coordinates were detected in the input specification! Bboxes will be automatically converted to polygon coordinates.
2020-08-26 11:25:09,012 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: shuffle: False - shard 0 of 1
2020-08-26 11:25:09,021 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: sampling 1 datasets with weights:
2020-08-26 11:25:09,022 [INFO] modulus.blocks.data_loaders.multi_source_loader.data_loader: source: 0 weight: 1.000000
Layer (type) Output Shape Param # Connected to
Input (InputLayer) (8, 3, 512, 910) 0
conv1 (Conv2D) (8, 64, 256, 455) 9408 Input[0][0]
bn_conv1 (BatchNormalization) (8, 64, 256, 455) 256 conv1[0][0]
activation_1 (Activation) (8, 64, 256, 455) 0 bn_conv1[0][0]
block_1a_conv_1 (Conv2D) (8, 64, 128, 228) 36864 activation_1[0][0]
block_1a_bn_1 (BatchNormalizati (8, 64, 128, 228) 256 block_1a_conv_1[0][0]
block_1a_relu_1 (Activation) (8, 64, 128, 228) 0 block_1a_bn_1[0][0]
block_1a_conv_2 (Conv2D) (8, 64, 128, 228) 36864 block_1a_relu_1[0][0]
block_1a_conv_shortcut (Conv2D) (8, 64, 128, 228) 4096 activation_1[0][0]
block_1a_bn_2 (BatchNormalizati (8, 64, 128, 228) 256 block_1a_conv_2[0][0]
block_1a_bn_shortcut (BatchNorm (8, 64, 128, 228) 256 block_1a_conv_shortcut[0][0]
add_1 (Add) (8, 64, 128, 228) 0 block_1a_bn_2[0][0]
block_1a_bn_shortcut[0][0]
block_1a_relu (Activation) (8, 64, 128, 228) 0 add_1[0][0]
block_1b_conv_1 (Conv2D) (8, 64, 128, 228) 36864 block_1a_relu[0][0]
block_1b_bn_1 (BatchNormalizati (8, 64, 128, 228) 256 block_1b_conv_1[0][0]
block_1b_relu_1 (Activation) (8, 64, 128, 228) 0 block_1b_bn_1[0][0]
block_1b_conv_2 (Conv2D) (8, 64, 128, 228) 36864 block_1b_relu_1[0][0]
block_1b_conv_shortcut (Conv2D) (8, 64, 128, 228) 4096 block_1a_relu[0][0]
block_1b_bn_2 (BatchNormalizati (8, 64, 128, 228) 256 block_1b_conv_2[0][0]
block_1b_bn_shortcut (BatchNorm (8, 64, 128, 228) 256 block_1b_conv_shortcut[0][0]
add_2 (Add) (8, 64, 128, 228) 0 block_1b_bn_2[0][0]
block_1b_bn_shortcut[0][0]
block_1b_relu (Activation) (8, 64, 128, 228) 0 add_2[0][0]
block_2a_conv_1 (Conv2D) (8, 128, 64, 114) 73728 block_1b_relu[0][0]
block_2a_bn_1 (BatchNormalizati (8, 128, 64, 114) 512 block_2a_conv_1[0][0]
block_2a_relu_1 (Activation) (8, 128, 64, 114) 0 block_2a_bn_1[0][0]
block_2a_conv_2 (Conv2D) (8, 128, 64, 114) 147456 block_2a_relu_1[0][0]
block_2a_conv_shortcut (Conv2D) (8, 128, 64, 114) 8192 block_1b_relu[0][0]
block_2a_bn_2 (BatchNormalizati (8, 128, 64, 114) 512 block_2a_conv_2[0][0]
block_2a_bn_shortcut (BatchNorm (8, 128, 64, 114) 512 block_2a_conv_shortcut[0][0]
add_3 (Add) (8, 128, 64, 114) 0 block_2a_bn_2[0][0]
block_2a_bn_shortcut[0][0]
block_2a_relu (Activation) (8, 128, 64, 114) 0 add_3[0][0]
block_2b_conv_1 (Conv2D) (8, 128, 64, 114) 147456 block_2a_relu[0][0]
block_2b_bn_1 (BatchNormalizati (8, 128, 64, 114) 512 block_2b_conv_1[0][0]
block_2b_relu_1 (Activation) (8, 128, 64, 114) 0 block_2b_bn_1[0][0]
block_2b_conv_2 (Conv2D) (8, 128, 64, 114) 147456 block_2b_relu_1[0][0]
block_2b_conv_shortcut (Conv2D) (8, 128, 64, 114) 16384 block_2a_relu[0][0]
block_2b_bn_2 (BatchNormalizati (8, 128, 64, 114) 512 block_2b_conv_2[0][0]
block_2b_bn_shortcut (BatchNorm (8, 128, 64, 114) 512 block_2b_conv_shortcut[0][0]
add_4 (Add) (8, 128, 64, 114) 0 block_2b_bn_2[0][0]
block_2b_bn_shortcut[0][0]
block_2b_relu (Activation) (8, 128, 64, 114) 0 add_4[0][0]
block_3a_conv_1 (Conv2D) (8, 256, 32, 57) 294912 block_2b_relu[0][0]
block_3a_bn_1 (BatchNormalizati (8, 256, 32, 57) 1024 block_3a_conv_1[0][0]
block_3a_relu_1 (Activation) (8, 256, 32, 57) 0 block_3a_bn_1[0][0]
block_3a_conv_2 (Conv2D) (8, 256, 32, 57) 589824 block_3a_relu_1[0][0]
block_3a_conv_shortcut (Conv2D) (8, 256, 32, 57) 32768 block_2b_relu[0][0]
block_3a_bn_2 (BatchNormalizati (8, 256, 32, 57) 1024 block_3a_conv_2[0][0]
block_3a_bn_shortcut (BatchNorm (8, 256, 32, 57) 1024 block_3a_conv_shortcut[0][0]
add_5 (Add) (8, 256, 32, 57) 0 block_3a_bn_2[0][0]
block_3a_bn_shortcut[0][0]
block_3a_relu (Activation) (8, 256, 32, 57) 0 add_5[0][0]
block_3b_conv_1 (Conv2D) (8, 256, 32, 57) 589824 block_3a_relu[0][0]
block_3b_bn_1 (BatchNormalizati (8, 256, 32, 57) 1024 block_3b_conv_1[0][0]
block_3b_relu_1 (Activation) (8, 256, 32, 57) 0 block_3b_bn_1[0][0]
block_3b_conv_2 (Conv2D) (8, 256, 32, 57) 589824 block_3b_relu_1[0][0]
block_3b_conv_shortcut (Conv2D) (8, 256, 32, 57) 65536 block_3a_relu[0][0]
block_3b_bn_2 (BatchNormalizati (8, 256, 32, 57) 1024 block_3b_conv_2[0][0]
block_3b_bn_shortcut (BatchNorm (8, 256, 32, 57) 1024 block_3b_conv_shortcut[0][0]
add_6 (Add) (8, 256, 32, 57) 0 block_3b_bn_2[0][0]
block_3b_bn_shortcut[0][0]
block_3b_relu (Activation) (8, 256, 32, 57) 0 add_6[0][0]
block_4a_conv_1 (Conv2D) (8, 512, 32, 57) 1179648 block_3b_relu[0][0]
block_4a_bn_1 (BatchNormalizati (8, 512, 32, 57) 2048 block_4a_conv_1[0][0]
block_4a_relu_1 (Activation) (8, 512, 32, 57) 0 block_4a_bn_1[0][0]
block_4a_conv_2 (Conv2D) (8, 512, 32, 57) 2359296 block_4a_relu_1[0][0]
block_4a_conv_shortcut (Conv2D) (8, 512, 32, 57) 131072 block_3b_relu[0][0]
block_4a_bn_2 (BatchNormalizati (8, 512, 32, 57) 2048 block_4a_conv_2[0][0]
block_4a_bn_shortcut (BatchNorm (8, 512, 32, 57) 2048 block_4a_conv_shortcut[0][0]
add_7 (Add) (8, 512, 32, 57) 0 block_4a_bn_2[0][0]
block_4a_bn_shortcut[0][0]
block_4a_relu (Activation) (8, 512, 32, 57) 0 add_7[0][0]
block_4b_conv_1 (Conv2D) (8, 512, 32, 57) 2359296 block_4a_relu[0][0]
block_4b_bn_1 (BatchNormalizati (8, 512, 32, 57) 2048 block_4b_conv_1[0][0]
block_4b_relu_1 (Activation) (8, 512, 32, 57) 0 block_4b_bn_1[0][0]
block_4b_conv_2 (Conv2D) (8, 512, 32, 57) 2359296 block_4b_relu_1[0][0]
block_4b_conv_shortcut (Conv2D) (8, 512, 32, 57) 262144 block_4a_relu[0][0]
block_4b_bn_2 (BatchNormalizati (8, 512, 32, 57) 2048 block_4b_conv_2[0][0]
block_4b_bn_shortcut (BatchNorm (8, 512, 32, 57) 2048 block_4b_conv_shortcut[0][0]
add_8 (Add) (8, 512, 32, 57) 0 block_4b_bn_2[0][0]
block_4b_bn_shortcut[0][0]
block_4b_relu (Activation) (8, 512, 32, 57) 0 add_8[0][0]
ssd_expand_block_0_conv_0 (Conv (8, 256, 32, 57) 131328 block_4b_relu[0][0]
ssd_expand_block_0_relu_0 (ReLU (8, 256, 32, 57) 0 ssd_expand_block_0_conv_0[0][0]
ssd_expand_block_0_conv_1 (Conv (8, 256, 32, 57) 589824 ssd_expand_block_0_relu_0[0][0]
ssd_expand_block_0_bn_1 (BatchN (8, 256, 32, 57) 1024 ssd_expand_block_0_conv_1[0][0]
ssd_expand_block_0_relu_1 (ReLU (8, 256, 32, 57) 0 ssd_expand_block_0_bn_1[0][0]
ssd_expand_block_1_conv_0 (Conv (8, 128, 32, 57) 32896 ssd_expand_block_0_relu_1[0][0]
ssd_expand_block_1_relu_0 (ReLU (8, 128, 32, 57) 0 ssd_expand_block_1_conv_0[0][0]
ssd_expand_block_1_conv_1 (Conv (8, 256, 16, 29) 294912 ssd_expand_block_1_relu_0[0][0]
ssd_expand_block_1_bn_1 (BatchN (8, 256, 16, 29) 1024 ssd_expand_block_1_conv_1[0][0]
ssd_expand_block_1_relu_1 (ReLU (8, 256, 16, 29) 0 ssd_expand_block_1_bn_1[0][0]
ssd_expand_block_2_conv_0 (Conv (8, 64, 16, 29) 16448 ssd_expand_block_1_relu_1[0][0]
ssd_expand_block_2_relu_0 (ReLU (8, 64, 16, 29) 0 ssd_expand_block_2_conv_0[0][0]
ssd_expand_block_2_conv_1 (Conv (8, 128, 8, 15) 73728 ssd_expand_block_2_relu_0[0][0]
ssd_expand_block_2_bn_1 (BatchN (8, 128, 8, 15) 512 ssd_expand_block_2_conv_1[0][0]
ssd_expand_block_2_relu_1 (ReLU (8, 128, 8, 15) 0 ssd_expand_block_2_bn_1[0][0]
ssd_expand_block_3_conv_0 (Conv (8, 64, 8, 15) 8256 ssd_expand_block_2_relu_1[0][0]
ssd_expand_block_3_relu_0 (ReLU (8, 64, 8, 15) 0 ssd_expand_block_3_conv_0[0][0]
ssd_expand_block_3_conv_1 (Conv (8, 128, 4, 8) 73728 ssd_expand_block_3_relu_0[0][0]
ssd_expand_block_3_bn_1 (BatchN (8, 128, 4, 8) 512 ssd_expand_block_3_conv_1[0][0]
ssd_expand_block_3_relu_1 (ReLU (8, 128, 4, 8) 0 ssd_expand_block_3_bn_1[0][0]
ssd_expand_block_4_conv_0 (Conv (8, 64, 4, 8) 8256 ssd_expand_block_3_relu_1[0][0]
ssd_expand_block_4_relu_0 (ReLU (8, 64, 4, 8) 0 ssd_expand_block_4_conv_0[0][0]
ssd_expand_block_4_conv_1 (Conv (8, 128, 2, 4) 73728 ssd_expand_block_4_relu_0[0][0]
ssd_expand_block_4_bn_1 (BatchN (8, 128, 2, 4) 512 ssd_expand_block_4_conv_1[0][0]
ssd_expand_block_4_relu_1 (ReLU (8, 128, 2, 4) 0 ssd_expand_block_4_bn_1[0][0]
ssd_conf_0 (Conv2D) (8, 18, 64, 114) 20754 block_2b_relu[0][0]
ssd_conf_1 (Conv2D) (8, 18, 32, 57) 41490 ssd_expand_block_0_relu_1[0][0]
ssd_conf_2 (Conv2D) (8, 18, 16, 29) 41490 ssd_expand_block_1_relu_1[0][0]
ssd_conf_3 (Conv2D) (8, 18, 8, 15) 20754 ssd_expand_block_2_relu_1[0][0]
ssd_conf_4 (Conv2D) (8, 18, 4, 8) 20754 ssd_expand_block_3_relu_1[0][0]
ssd_conf_5 (Conv2D) (8, 18, 2, 4) 20754 ssd_expand_block_4_relu_1[0][0]
permute_1 (Permute) (8, 64, 114, 18) 0 ssd_conf_0[0][0]
permute_2 (Permute) (8, 32, 57, 18) 0 ssd_conf_1[0][0]
permute_3 (Permute) (8, 16, 29, 18) 0 ssd_conf_2[0][0]
permute_4 (Permute) (8, 8, 15, 18) 0 ssd_conf_3[0][0]
permute_5 (Permute) (8, 4, 8, 18) 0 ssd_conf_4[0][0]
permute_6 (Permute) (8, 2, 4, 18) 0 ssd_conf_5[0][0]
ssd_loc_0 (Conv2D) (8, 24, 64, 114) 27672 block_2b_relu[0][0]
ssd_loc_1 (Conv2D) (8, 24, 32, 57) 55320 ssd_expand_block_0_relu_1[0][0]
ssd_loc_2 (Conv2D) (8, 24, 16, 29) 55320 ssd_expand_block_1_relu_1[0][0]
ssd_loc_3 (Conv2D) (8, 24, 8, 15) 27672 ssd_expand_block_2_relu_1[0][0]
ssd_loc_4 (Conv2D) (8, 24, 4, 8) 27672 ssd_expand_block_3_relu_1[0][0]
ssd_loc_5 (Conv2D) (8, 24, 2, 4) 27672 ssd_expand_block_4_relu_1[0][0]
conf_reshape_0 (Reshape) (8, 43776, 1, 3) 0 permute_1[0][0]
conf_reshape_1 (Reshape) (8, 10944, 1, 3) 0 permute_2[0][0]
conf_reshape_2 (Reshape) (8, 2784, 1, 3) 0 permute_3[0][0]
conf_reshape_3 (Reshape) (8, 720, 1, 3) 0 permute_4[0][0]
conf_reshape_4 (Reshape) (8, 192, 1, 3) 0 permute_5[0][0]
conf_reshape_5 (Reshape) (8, 48, 1, 3) 0 permute_6[0][0]
permute_7 (Permute) (8, 64, 114, 24) 0 ssd_loc_0[0][0]
permute_8 (Permute) (8, 32, 57, 24) 0 ssd_loc_1[0][0]
permute_9 (Permute) (8, 16, 29, 24) 0 ssd_loc_2[0][0]
permute_10 (Permute) (8, 8, 15, 24) 0 ssd_loc_3[0][0]
permute_11 (Permute) (8, 4, 8, 24) 0 ssd_loc_4[0][0]
permute_12 (Permute) (8, 2, 4, 24) 0 ssd_loc_5[0][0]
ssd_anchor_0 (AnchorBoxes) (8, 7296, 6, 8) 0 ssd_loc_0[0][0]
ssd_anchor_1 (AnchorBoxes) (8, 1824, 6, 8) 0 ssd_loc_1[0][0]
ssd_anchor_2 (AnchorBoxes) (8, 464, 6, 8) 0 ssd_loc_2[0][0]
ssd_anchor_3 (AnchorBoxes) (8, 120, 6, 8) 0 ssd_loc_3[0][0]
ssd_anchor_4 (AnchorBoxes) (8, 32, 6, 8) 0 ssd_loc_4[0][0]
ssd_anchor_5 (AnchorBoxes) (8, 8, 6, 8) 0 ssd_loc_5[0][0]
mbox_conf (Concatenate) (8, 58464, 1, 3) 0 conf_reshape_0[0][0]
conf_reshape_1[0][0]
conf_reshape_2[0][0]
conf_reshape_3[0][0]
conf_reshape_4[0][0]
conf_reshape_5[0][0]
loc_reshape_0 (Reshape) (8, 43776, 1, 4) 0 permute_7[0][0]
loc_reshape_1 (Reshape) (8, 10944, 1, 4) 0 permute_8[0][0]
loc_reshape_2 (Reshape) (8, 2784, 1, 4) 0 permute_9[0][0]
loc_reshape_3 (Reshape) (8, 720, 1, 4) 0 permute_10[0][0]
loc_reshape_4 (Reshape) (8, 192, 1, 4) 0 permute_11[0][0]
loc_reshape_5 (Reshape) (8, 48, 1, 4) 0 permute_12[0][0]
anchor_reshape_0 (Reshape) (8, 43776, 1, 8) 0 ssd_anchor_0[0][0]
anchor_reshape_1 (Reshape) (8, 10944, 1, 8) 0 ssd_anchor_1[0][0]
anchor_reshape_2 (Reshape) (8, 2784, 1, 8) 0 ssd_anchor_2[0][0]
anchor_reshape_3 (Reshape) (8, 720, 1, 8) 0 ssd_anchor_3[0][0]
anchor_reshape_4 (Reshape) (8, 192, 1, 8) 0 ssd_anchor_4[0][0]
anchor_reshape_5 (Reshape) (8, 48, 1, 8) 0 ssd_anchor_5[0][0]
mbox_conf_sigmoid (Activation) (8, 58464, 1, 3) 0 mbox_conf[0][0]
mbox_loc (Concatenate) (8, 58464, 1, 4) 0 loc_reshape_0[0][0]
loc_reshape_1[0][0]
loc_reshape_2[0][0]
loc_reshape_3[0][0]
loc_reshape_4[0][0]
loc_reshape_5[0][0]
mbox_priorbox (Concatenate) (8, 58464, 1, 8) 0 anchor_reshape_0[0][0]
anchor_reshape_1[0][0]
anchor_reshape_2[0][0]
anchor_reshape_3[0][0]
anchor_reshape_4[0][0]
anchor_reshape_5[0][0]
concatenate_1 (Concatenate) (8, 58464, 1, 15) 0 mbox_conf_sigmoid[0][0]
mbox_loc[0][0]
mbox_priorbox[0][0]
ssd_predictions (Reshape) (8, 58464, 15) 0 concatenate_1[0][0]
Total params: 13,236,476
Trainable params: 13,213,628
Non-trainable params: 22,848
2020-08-26 11:25:14,701 [INFO] iva.ssd.scripts.train: Number of images in the training dataset: 288
2020-08-26 11:25:14,702 [INFO] iva.ssd.scripts.train: Number of images in the validation dataset: 46
Epoch 1/80
2020-08-26 11:25:25.225058: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
2020-08-26 11:25:25.801597: I tensorflow/core/kernels/cuda_solvers.cc:159] Creating CudaSolver handles for stream 0x15409ab0
2020-08-26 11:25:25.801837: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
2020-08-26 11:25:26.044771: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
2020-08-26 11:25:26.045975: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-08-26 11:25:27.555419: W tensorflow/core/common_runtime/bfc_allocator.cc:305] Garbage collection: deallocate free memory regions (i.e., allocations) so that we can re-allocate a larger region to avoid OOM due to memory fragmentation. If you see this message frequently, you are running near the threshold of the available device memory and re-allocation may incur great performance overhead. You may try smaller batch sizes to observe the performance impact. Set TF_ENABLE_GPU_GARBAGE_COLLECTION=false if you’d like to disable this feature.
36/36 [==============================] - 43s 1s/step - loss: 17506.8723
Epoch 00001: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_001.tlt
Epoch 2/80
36/36 [==============================] - 28s 764ms/step - loss: 13.3258
Epoch 00002: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_002.tlt
Epoch 3/80
36/36 [==============================] - 27s 763ms/step - loss: 13.3379
Epoch 00003: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_003.tlt
Epoch 4/80
36/36 [==============================] - 27s 762ms/step - loss: 13.3173
Epoch 00004: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_004.tlt
Epoch 5/80
36/36 [==============================] - 27s 761ms/step - loss: 13.2983
Epoch 00005: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_005.tlt
Epoch 6/80
36/36 [==============================] - 28s 765ms/step - loss: 13.2838
Epoch 00006: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_006.tlt
Epoch 7/80
36/36 [==============================] - 28s 764ms/step - loss: 13.2706
Epoch 00007: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_007.tlt
Epoch 8/80
36/36 [==============================] - 27s 751ms/step - loss: 13.2582
Epoch 00008: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_008.tlt
Epoch 9/80
36/36 [==============================] - 27s 752ms/step - loss: 13.2432
Epoch 00009: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_009.tlt
Epoch 10/80
36/36 [==============================] - 27s 752ms/step - loss: 13.2234
Epoch 00010: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_010.tlt
Number of images in the evaluation dataset: 46
Producing predictions: 100%|██████████████████████| 6/6 [00:05<00:00, 1.12it/s]
Start multi-thread per-image matching
Start to calculate AP for each class
BLACK_ARTENGO AP 0.0
BLUE_ARTENGO AP 0.0
RED_KUIKMA AP 0.0
mAP 0.0
Epoch 11/80
36/36 [==============================] - 27s 752ms/step - loss: 13.1938
Epoch 00011: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_011.tlt
Epoch 12/80
36/36 [==============================] - 27s 753ms/step - loss: 13.1467
Epoch 00012: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_012.tlt
Epoch 13/80
36/36 [==============================] - 27s 753ms/step - loss: 13.0748
Epoch 00013: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_013.tlt
Epoch 14/80
36/36 [==============================] - 27s 751ms/step - loss: 12.9918
Epoch 00014: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_014.tlt
Epoch 15/80
36/36 [==============================] - 27s 751ms/step - loss: 12.9093
Epoch 00015: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_015.tlt
Epoch 16/80
36/36 [==============================] - 27s 751ms/step - loss: 12.8276
Epoch 00016: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_016.tlt
Epoch 17/80
36/36 [==============================] - 27s 752ms/step - loss: 12.7467
Epoch 00017: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_017.tlt
Epoch 18/80
36/36 [==============================] - 27s 751ms/step - loss: 12.6667
Epoch 00018: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_018.tlt
Epoch 19/80
36/36 [==============================] - 27s 753ms/step - loss: 12.5875
Epoch 00019: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_019.tlt
Epoch 20/80
36/36 [==============================] - 27s 752ms/step - loss: 12.5092
Epoch 00020: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_020.tlt
Number of images in the evaluation dataset: 46
Producing predictions: 100%|██████████████████████| 6/6 [00:04<00:00, 1.21it/s]
Start multi-thread per-image matching
Start to calculate AP for each class
BLACK_ARTENGO AP 0.0
BLUE_ARTENGO AP 0.0
RED_KUIKMA AP 0.0
mAP 0.0
Epoch 21/80
36/36 [==============================] - 27s 758ms/step - loss: 12.4317
Epoch 00021: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_021.tlt
Epoch 22/80
36/36 [==============================] - 27s 754ms/step - loss: 12.3550
Epoch 00022: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_022.tlt
Epoch 23/80
36/36 [==============================] - 27s 752ms/step - loss: 12.2791
Epoch 00023: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_023.tlt
Epoch 24/80
36/36 [==============================] - 27s 752ms/step - loss: 12.2040
Epoch 00024: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_024.tlt
Epoch 25/80
36/36 [==============================] - 27s 754ms/step - loss: 12.1298
Epoch 00025: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_025.tlt
Epoch 26/80
36/36 [==============================] - 27s 755ms/step - loss: 12.0563
Epoch 00026: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_026.tlt
Epoch 27/80
36/36 [==============================] - 27s 753ms/step - loss: 11.9837
Epoch 00027: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_027.tlt
Epoch 28/80
36/36 [==============================] - 27s 754ms/step - loss: 11.9119
Epoch 00028: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_028.tlt
Epoch 29/80
36/36 [==============================] - 27s 754ms/step - loss: 11.8409
Epoch 00029: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_029.tlt
Epoch 30/80
36/36 [==============================] - 27s 754ms/step - loss: 11.7706
Epoch 00030: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_030.tlt
Number of images in the evaluation dataset: 46
Producing predictions: 100%|██████████████████████| 6/6 [00:04<00:00, 1.25it/s]
Start multi-thread per-image matching
Start to calculate AP for each class
BLACK_ARTENGO AP 0.0
BLUE_ARTENGO AP 0.0
RED_KUIKMA AP 0.0
mAP 0.0
Epoch 31/80
36/36 [==============================] - 27s 757ms/step - loss: 11.7012
Epoch 00031: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_031.tlt
Epoch 32/80
36/36 [==============================] - 27s 754ms/step - loss: 11.6325
Epoch 00032: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_032.tlt
Epoch 33/80
36/36 [==============================] - 27s 754ms/step - loss: 11.5647
Epoch 00033: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_033.tlt
Epoch 34/80
36/36 [==============================] - 27s 754ms/step - loss: 11.4976
Epoch 00034: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_034.tlt
Epoch 35/80
36/36 [==============================] - 27s 752ms/step - loss: 11.4313
Epoch 00035: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_035.tlt
Epoch 36/80
36/36 [==============================] - 27s 754ms/step - loss: 11.3658
Epoch 00036: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_036.tlt
Epoch 37/80
36/36 [==============================] - 27s 753ms/step - loss: 11.3010
Epoch 00037: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_037.tlt
Epoch 38/80
36/36 [==============================] - 27s 754ms/step - loss: 11.2370
Epoch 00038: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_038.tlt
Epoch 39/80
36/36 [==============================] - 27s 754ms/step - loss: 11.1738
Epoch 00039: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_039.tlt
Epoch 40/80
36/36 [==============================] - 27s 754ms/step - loss: 11.1113
Epoch 00040: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_040.tlt
Number of images in the evaluation dataset: 46
Producing predictions: 100%|██████████████████████| 6/6 [00:05<00:00, 1.15it/s]
Start multi-thread per-image matching
Start to calculate AP for each class
BLACK_ARTENGO AP 0.0
BLUE_ARTENGO AP 0.0
RED_KUIKMA AP 0.0
mAP 0.0
Epoch 41/80
36/36 [==============================] - 27s 756ms/step - loss: 11.0496
Epoch 00041: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_041.tlt
Epoch 42/80
36/36 [==============================] - 27s 753ms/step - loss: 10.9886
Epoch 00042: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_042.tlt
Epoch 43/80
36/36 [==============================] - 27s 754ms/step - loss: 10.9284
Epoch 00043: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_043.tlt
Epoch 44/80
36/36 [==============================] - 27s 755ms/step - loss: 10.8689
Epoch 00044: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_044.tlt
Epoch 45/80
36/36 [==============================] - 27s 753ms/step - loss: 10.8102
Epoch 00045: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_045.tlt
Epoch 46/80
36/36 [==============================] - 27s 754ms/step - loss: 10.7521
Epoch 00046: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_046.tlt
Epoch 47/80
36/36 [==============================] - 27s 752ms/step - loss: 10.6948
Epoch 00047: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_047.tlt
Epoch 48/80
36/36 [==============================] - 27s 752ms/step - loss: 10.6382
Epoch 00048: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_048.tlt
Epoch 49/80
36/36 [==============================] - 27s 753ms/step - loss: 10.5824
Epoch 00049: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_049.tlt
Epoch 50/80
36/36 [==============================] - 27s 754ms/step - loss: 10.5272
Epoch 00050: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_050.tlt
Number of images in the evaluation dataset: 46
Producing predictions: 100%|██████████████████████| 6/6 [00:05<00:00, 1.18it/s]
Start multi-thread per-image matching
Start to calculate AP for each class
BLACK_ARTENGO AP 0.0
BLUE_ARTENGO AP 0.0
RED_KUIKMA AP 0.0
mAP 0.0
Epoch 51/80
36/36 [==============================] - 27s 753ms/step - loss: 10.4727
Epoch 00051: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_051.tlt
Epoch 52/80
36/36 [==============================] - 27s 750ms/step - loss: 10.4189
Epoch 00052: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_052.tlt
Epoch 53/80
36/36 [==============================] - 27s 752ms/step - loss: 10.3659
Epoch 00053: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_053.tlt
Epoch 54/80
36/36 [==============================] - 27s 752ms/step - loss: 10.3134
Epoch 00054: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_054.tlt
Epoch 55/80
36/36 [==============================] - 27s 752ms/step - loss: 10.2617
Epoch 00055: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_055.tlt
Epoch 56/80
36/36 [==============================] - 27s 751ms/step - loss: 10.2106
Epoch 00056: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_056.tlt
Epoch 57/80
36/36 [==============================] - 27s 751ms/step - loss: 10.1603
Epoch 00057: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_057.tlt
Epoch 58/80
36/36 [==============================] - 27s 750ms/step - loss: 10.1105
Epoch 00058: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_058.tlt
Epoch 59/80
36/36 [==============================] - 27s 751ms/step - loss: 10.0614
Epoch 00059: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_059.tlt
Epoch 60/80
36/36 [==============================] - 27s 751ms/step - loss: 10.0130
Epoch 00060: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_060.tlt
Number of images in the evaluation dataset: 46
Producing predictions: 100%|██████████████████████| 6/6 [00:05<00:00, 1.16it/s]
Start multi-thread per-image matching
Start to calculate AP for each class
BLACK_ARTENGO AP 0.0
BLUE_ARTENGO AP 0.0
RED_KUIKMA AP 0.0
mAP 0.0
Epoch 61/80
36/36 [==============================] - 27s 751ms/step - loss: 9.9652
Epoch 00061: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_061.tlt
Epoch 62/80
36/36 [==============================] - 27s 753ms/step - loss: 9.9180
Epoch 00062: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_062.tlt
Epoch 63/80
36/36 [==============================] - 27s 751ms/step - loss: 9.8714
Epoch 00063: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_063.tlt
Epoch 64/80
36/36 [==============================] - 27s 751ms/step - loss: 9.8255
Epoch 00064: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_064.tlt
Epoch 65/80
36/36 [==============================] - 27s 750ms/step - loss: 9.7814
Epoch 00065: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_065.tlt
Epoch 66/80
36/36 [==============================] - 27s 751ms/step - loss: 9.7469
Epoch 00066: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_066.tlt
Epoch 67/80
36/36 [==============================] - 27s 751ms/step - loss: 9.7232
Epoch 00067: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_067.tlt
Epoch 68/80
36/36 [==============================] - 27s 752ms/step - loss: 9.7070
Epoch 00068: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_068.tlt
Epoch 69/80
36/36 [==============================] - 27s 750ms/step - loss: 9.6959
Epoch 00069: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_069.tlt
Epoch 70/80
36/36 [==============================] - 27s 751ms/step - loss: 9.6882
Epoch 00070: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_070.tlt
Number of images in the evaluation dataset: 46
Producing predictions: 100%|██████████████████████| 6/6 [00:05<00:00, 1.18it/s]
Start multi-thread per-image matching
Start to calculate AP for each class
BLACK_ARTENGO AP 0.0
BLUE_ARTENGO AP 0.0
RED_KUIKMA AP 0.0
mAP 0.0
Epoch 71/80
36/36 [==============================] - 27s 752ms/step - loss: 9.6830
Epoch 00071: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_071.tlt
Epoch 72/80
36/36 [==============================] - 27s 754ms/step - loss: 9.6794
Epoch 00072: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_072.tlt
Epoch 73/80
36/36 [==============================] - 27s 754ms/step - loss: 9.6770
Epoch 00073: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_073.tlt
Epoch 74/80
36/36 [==============================] - 27s 754ms/step - loss: 9.6753
Epoch 00074: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_074.tlt
Epoch 75/80
36/36 [==============================] - 27s 753ms/step - loss: 9.6741
Epoch 00075: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_075.tlt
Epoch 76/80
36/36 [==============================] - 27s 755ms/step - loss: 9.6733
Epoch 00076: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_076.tlt
Epoch 77/80
36/36 [==============================] - 27s 754ms/step - loss: 9.6728
Epoch 00077: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_077.tlt
Epoch 78/80
36/36 [==============================] - 27s 753ms/step - loss: 9.6724
Epoch 00078: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_078.tlt
Epoch 79/80
36/36 [==============================] - 27s 753ms/step - loss: 9.6721
Epoch 00079: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_079.tlt
Epoch 80/80
36/36 [==============================] - 27s 754ms/step - loss: 9.6719
Epoch 00080: saving model to /workspace/tlt-experiments/ssd/experiment_dir_unpruned/weights/ssd_resnet18_epoch_080.tlt
Number of images in the evaluation dataset: 46
Producing predictions: 100%|██████████████████████| 6/6 [00:05<00:00, 1.08it/s]
Start multi-thread per-image matching
Start to calculate AP for each class
BLACK_ARTENGO AP 0.0
BLUE_ARTENGO AP 0.0
RED_KUIKMA AP 0.0
mAP 0.0
the training with the example zip files works, but not when i change the settings so to use my own pictures and annotations.
thank you for your help!
br, Martin