Dear @Morganh,
I am training a model using Mask R-CNN. After training the model, I am trying to convert the .tlt file to .onnx, but it is generating a .uff file instead. I also tried using --onnx_route tf2onnx in the export command, but it didn’t work. Could you please suggest how we can directly get the .onnx file? I am unable to convert .uff to .onnx.
I am using TAO version 5.5 on a machine with an NVIDIA 2080 Ti GPU and NVIDIA driver version 535.183.01.
# tao <task> export will fail if .onnx already exists. So we clear the export folder before tao <task> export
#!rm -rf $LOCAL_EXPERIMENT_DIR/export
#!mkdir -p $LOCAL_EXPERIMENT_DIR/export
# Generate .onnx file using tao container
!tao model mask_rcnn export -m $USER_EXPERIMENT_DIR/experiment_dir_unpruned/model.epoch-5.tlt \
-e $SPECS_DIR/maskrcnn_train_resnet10.txt \
--gen_ds_config
2025-01-09 18:16:56,921 [TAO Toolkit] [INFO] root 160: Registry: ['nvcr.io']
2025-01-09 18:16:56,978 [TAO Toolkit] [INFO] nvidia_tao_cli.components.instance_handler.local_instance 361: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:5.0.0-tf1.15.5
2025-01-09 18:16:57,006 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 301: Printing tty value True
2025-01-09 12:46:57.547332: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
2025-01-09 12:46:57,581 [TAO Toolkit] [WARNING] tensorflow 40: Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
2025-01-09 12:46:58.734242: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
Using TensorFlow backend.
2025-01-09 12:46:58,826 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2025-01-09 12:46:58,848 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2025-01-09 12:46:58,851 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2025-01-09 12:46:59,067 [TAO Toolkit] [WARNING] matplotlib 500: Matplotlib created a temporary config/cache directory at /tmp/matplotlib-ce77zrex because the default path (/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.
2025-01-09 12:46:59,200 [TAO Toolkit] [INFO] matplotlib.font_manager 1633: generated new fontManager
2025-01-09 12:46:59.746133: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libnvinfer.so.8
2025-01-09 12:46:59.757967: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcuda.so.1
Using TensorFlow backend.
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
WARNING:tensorflow:TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2025-01-09 12:47:01,131 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2025-01-09 12:47:01,153 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2025-01-09 12:47:01,156 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2025-01-09 12:47:01,473 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.common.export.app 264: Saving exported model to /workspace/tao-experiments/mask_rcnn/experiment_dir_unpruned/model.epoch-5.uff
2025-01-09 12:47:01,473 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.mask_rcnn.utils.spec_loader 47: Loading specification from /workspace/tao-experiments/mask_rcnn/specs/maskrcnn_train_resnet10.txt
2025-01-09 12:47:01,474 [TAO Toolkit] [INFO] root 2082: Loading weights from /workspace/tao-experiments/mask_rcnn/experiment_dir_unpruned/model.epoch-5.tlt
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpyu1yaprq', '_tf_random_seed': 123, '_save_summary_steps': None, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': gpu_options {
allow_growth: true
force_gpu_compatible: true
}
allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: TWO
}
}
, '_keep_checkpoint_max': 20, '_keep_checkpoint_every_n_hours': None, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7cfe22221610>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
2025-01-09 12:47:01,705 [TAO Toolkit] [INFO] tensorflow 212: Using config: {'_model_dir': '/tmp/tmpyu1yaprq', '_tf_random_seed': 123, '_save_summary_steps': None, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': gpu_options {
allow_growth: true
force_gpu_compatible: true
}
allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: TWO
}
}
, '_keep_checkpoint_max': 20, '_keep_checkpoint_every_n_hours': None, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7cfe22221610>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Create CheckpointSaverHook.
2025-01-09 12:47:01,705 [TAO Toolkit] [INFO] tensorflow 541: Create CheckpointSaverHook.
[MaskRCNN] INFO : [*] Limiting the amount of sample to: 5000
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/third_party/keras/tensorflow_backend.py:361: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
2025-01-09 12:47:01,745 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/third_party/keras/tensorflow_backend.py:361: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
2025-01-09 12:47:01,752 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/tensorflow_core/python/autograph/converters/directives.py:119: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
WARNING:tensorflow:The operation `tf.image.convert_image_dtype` will be skipped since the input and output dtypes are identical.
2025-01-09 12:47:02,434 [TAO Toolkit] [WARNING] tensorflow 1776: The operation `tf.image.convert_image_dtype` will be skipped since the input and output dtypes are identical.
WARNING:tensorflow:The operation `tf.image.convert_image_dtype` will be skipped since the input and output dtypes are identical.
2025-01-09 12:47:02,436 [TAO Toolkit] [WARNING] tensorflow 1776: The operation `tf.image.convert_image_dtype` will be skipped since the input and output dtypes are identical.
WARNING:tensorflow:The operation `tf.image.convert_image_dtype` will be skipped since the input and output dtypes are identical.
2025-01-09 12:47:02,439 [TAO Toolkit] [WARNING] tensorflow 1776: The operation `tf.image.convert_image_dtype` will be skipped since the input and output dtypes are identical.
WARNING:tensorflow:The operation `tf.image.convert_image_dtype` will be skipped since the input and output dtypes are identical.
2025-01-09 12:47:02,442 [TAO Toolkit] [WARNING] tensorflow 1776: The operation `tf.image.convert_image_dtype` will be skipped since the input and output dtypes are identical.
INFO:tensorflow:Calling model_fn.
2025-01-09 12:47:03,051 [TAO Toolkit] [INFO] tensorflow 1148: Calling model_fn.
[MaskRCNN] INFO : ***********************
[MaskRCNN] INFO : Loading model graph...
[MaskRCNN] INFO : ***********************
[MaskRCNN] INFO : [ROI OPs] Using Batched NMS... Scope: MLP/multilevel_propose_rois/level_2/
[MaskRCNN] INFO : [ROI OPs] Using Batched NMS... Scope: MLP/multilevel_propose_rois/level_3/
[MaskRCNN] INFO : [ROI OPs] Using Batched NMS... Scope: MLP/multilevel_propose_rois/level_4/
[MaskRCNN] INFO : [ROI OPs] Using Batched NMS... Scope: MLP/multilevel_propose_rois/level_5/
[MaskRCNN] INFO : [ROI OPs] Using Batched NMS... Scope: MLP/multilevel_propose_rois/level_6/
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
image_input (ImageInput) [(8, 3, 640, 640)] 0
__________________________________________________________________________________________________
conv1 (Conv2D) (8, 64, 320, 320) 9408 image_input[0][0]
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization) (8, 64, 320, 320) 256 conv1[0][0]
__________________________________________________________________________________________________
activation (Activation) (8, 64, 320, 320) 0 bn_conv1[0][0]
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D) (8, 64, 160, 160) 0 activation[0][0]
__________________________________________________________________________________________________
block_1a_conv_1 (Conv2D) (8, 64, 160, 160) 36864 max_pooling2d[0][0]
__________________________________________________________________________________________________
block_1a_bn_1 (BatchNormalizati (8, 64, 160, 160) 256 block_1a_conv_1[0][0]
__________________________________________________________________________________________________
block_1a_relu_1 (Activation) (8, 64, 160, 160) 0 block_1a_bn_1[0][0]
__________________________________________________________________________________________________
block_1a_conv_2 (Conv2D) (8, 64, 160, 160) 36864 block_1a_relu_1[0][0]
__________________________________________________________________________________________________
block_1a_conv_shortcut (Conv2D) (8, 64, 160, 160) 4096 max_pooling2d[0][0]
__________________________________________________________________________________________________
block_1a_bn_2 (BatchNormalizati (8, 64, 160, 160) 256 block_1a_conv_2[0][0]
__________________________________________________________________________________________________
block_1a_bn_shortcut (BatchNorm (8, 64, 160, 160) 256 block_1a_conv_shortcut[0][0]
__________________________________________________________________________________________________
add (Add) (8, 64, 160, 160) 0 block_1a_bn_2[0][0]
block_1a_bn_shortcut[0][0]
__________________________________________________________________________________________________
block_1a_relu (Activation) (8, 64, 160, 160) 0 add[0][0]
__________________________________________________________________________________________________
block_2a_conv_1 (Conv2D) (8, 128, 80, 80) 73728 block_1a_relu[0][0]
__________________________________________________________________________________________________
block_2a_bn_1 (BatchNormalizati (8, 128, 80, 80) 512 block_2a_conv_1[0][0]
__________________________________________________________________________________________________
block_2a_relu_1 (Activation) (8, 128, 80, 80) 0 block_2a_bn_1[0][0]
__________________________________________________________________________________________________
block_2a_conv_2 (Conv2D) (8, 128, 80, 80) 147456 block_2a_relu_1[0][0]
__________________________________________________________________________________________________
block_2a_conv_shortcut (Conv2D) (8, 128, 80, 80) 8192 block_1a_relu[0][0]
__________________________________________________________________________________________________
block_2a_bn_2 (BatchNormalizati (8, 128, 80, 80) 512 block_2a_conv_2[0][0]
__________________________________________________________________________________________________
block_2a_bn_shortcut (BatchNorm (8, 128, 80, 80) 512 block_2a_conv_shortcut[0][0]
__________________________________________________________________________________________________
add_1 (Add) (8, 128, 80, 80) 0 block_2a_bn_2[0][0]
block_2a_bn_shortcut[0][0]
__________________________________________________________________________________________________
block_2a_relu (Activation) (8, 128, 80, 80) 0 add_1[0][0]
__________________________________________________________________________________________________
block_3a_conv_1 (Conv2D) (8, 256, 40, 40) 294912 block_2a_relu[0][0]
__________________________________________________________________________________________________
block_3a_bn_1 (BatchNormalizati (8, 256, 40, 40) 1024 block_3a_conv_1[0][0]
__________________________________________________________________________________________________
block_3a_relu_1 (Activation) (8, 256, 40, 40) 0 block_3a_bn_1[0][0]
__________________________________________________________________________________________________
block_3a_conv_2 (Conv2D) (8, 256, 40, 40) 589824 block_3a_relu_1[0][0]
__________________________________________________________________________________________________
block_3a_conv_shortcut (Conv2D) (8, 256, 40, 40) 32768 block_2a_relu[0][0]
__________________________________________________________________________________________________
block_3a_bn_2 (BatchNormalizati (8, 256, 40, 40) 1024 block_3a_conv_2[0][0]
__________________________________________________________________________________________________
block_3a_bn_shortcut (BatchNorm (8, 256, 40, 40) 1024 block_3a_conv_shortcut[0][0]
__________________________________________________________________________________________________
add_2 (Add) (8, 256, 40, 40) 0 block_3a_bn_2[0][0]
block_3a_bn_shortcut[0][0]
__________________________________________________________________________________________________
block_3a_relu (Activation) (8, 256, 40, 40) 0 add_2[0][0]
__________________________________________________________________________________________________
block_4a_conv_1 (Conv2D) (8, 512, 20, 20) 1179648 block_3a_relu[0][0]
__________________________________________________________________________________________________
block_4a_bn_1 (BatchNormalizati (8, 512, 20, 20) 2048 block_4a_conv_1[0][0]
__________________________________________________________________________________________________
block_4a_relu_1 (Activation) (8, 512, 20, 20) 0 block_4a_bn_1[0][0]
__________________________________________________________________________________________________
block_4a_conv_2 (Conv2D) (8, 512, 20, 20) 2359296 block_4a_relu_1[0][0]
__________________________________________________________________________________________________
block_4a_conv_shortcut (Conv2D) (8, 512, 20, 20) 131072 block_3a_relu[0][0]
__________________________________________________________________________________________________
block_4a_bn_2 (BatchNormalizati (8, 512, 20, 20) 2048 block_4a_conv_2[0][0]
__________________________________________________________________________________________________
block_4a_bn_shortcut (BatchNorm (8, 512, 20, 20) 2048 block_4a_conv_shortcut[0][0]
__________________________________________________________________________________________________
add_3 (Add) (8, 512, 20, 20) 0 block_4a_bn_2[0][0]
block_4a_bn_shortcut[0][0]
__________________________________________________________________________________________________
block_4a_relu (Activation) (8, 512, 20, 20) 0 add_3[0][0]
__________________________________________________________________________________________________
l5 (Conv2D) (8, 256, 20, 20) 131328 block_4a_relu[0][0]
__________________________________________________________________________________________________
l4 (Conv2D) (8, 256, 40, 40) 65792 block_3a_relu[0][0]
__________________________________________________________________________________________________
FPN_up_4 (UpSampling2D) (8, 256, 40, 40) 0 l5[0][0]
__________________________________________________________________________________________________
FPN_add_4 (Add) (8, 256, 40, 40) 0 l4[0][0]
FPN_up_4[0][0]
__________________________________________________________________________________________________
l3 (Conv2D) (8, 256, 80, 80) 33024 block_2a_relu[0][0]
__________________________________________________________________________________________________
FPN_up_3 (UpSampling2D) (8, 256, 80, 80) 0 FPN_add_4[0][0]
__________________________________________________________________________________________________
FPN_add_3 (Add) (8, 256, 80, 80) 0 l3[0][0]
FPN_up_3[0][0]
__________________________________________________________________________________________________
l2 (Conv2D) (8, 256, 160, 160) 16640 block_1a_relu[0][0]
__________________________________________________________________________________________________
FPN_up_2 (UpSampling2D) (8, 256, 160, 160) 0 FPN_add_3[0][0]
__________________________________________________________________________________________________
FPN_add_2 (Add) (8, 256, 160, 160) 0 l2[0][0]
FPN_up_2[0][0]
__________________________________________________________________________________________________
post_hoc_d5 (Conv2D) (8, 256, 20, 20) 590080 l5[0][0]
__________________________________________________________________________________________________
post_hoc_d2 (Conv2D) (8, 256, 160, 160) 590080 FPN_add_2[0][0]
__________________________________________________________________________________________________
post_hoc_d3 (Conv2D) (8, 256, 80, 80) 590080 FPN_add_3[0][0]
__________________________________________________________________________________________________
post_hoc_d4 (Conv2D) (8, 256, 40, 40) 590080 FPN_add_4[0][0]
__________________________________________________________________________________________________
p6 (MaxPooling2D) (8, 256, 10, 10) 0 post_hoc_d5[0][0]
__________________________________________________________________________________________________
rpn (Conv2D) multiple 590080 post_hoc_d2[0][0]
post_hoc_d3[0][0]
post_hoc_d4[0][0]
post_hoc_d5[0][0]
p6[0][0]
__________________________________________________________________________________________________
rpn-class (Conv2D) multiple 771 rpn[0][0]
rpn[1][0]
rpn[2][0]
rpn[3][0]
rpn[4][0]
__________________________________________________________________________________________________
rpn-box (Conv2D) multiple 3084 rpn[0][0]
rpn[1][0]
rpn[2][0]
rpn[3][0]
rpn[4][0]
__________________________________________________________________________________________________
permute (Permute) (8, 160, 160, 3) 0 rpn-class[0][0]
__________________________________________________________________________________________________
permute_2 (Permute) (8, 80, 80, 3) 0 rpn-class[1][0]
__________________________________________________________________________________________________
permute_4 (Permute) (8, 40, 40, 3) 0 rpn-class[2][0]
__________________________________________________________________________________________________
permute_6 (Permute) (8, 20, 20, 3) 0 rpn-class[3][0]
__________________________________________________________________________________________________
permute_8 (Permute) (8, 10, 10, 3) 0 rpn-class[4][0]
__________________________________________________________________________________________________
permute_1 (Permute) (8, 160, 160, 12) 0 rpn-box[0][0]
__________________________________________________________________________________________________
permute_3 (Permute) (8, 80, 80, 12) 0 rpn-box[1][0]
__________________________________________________________________________________________________
permute_5 (Permute) (8, 40, 40, 12) 0 rpn-box[2][0]
__________________________________________________________________________________________________
permute_7 (Permute) (8, 20, 20, 12) 0 rpn-box[3][0]
__________________________________________________________________________________________________
permute_9 (Permute) (8, 10, 10, 12) 0 rpn-box[4][0]
__________________________________________________________________________________________________
anchor_layer (AnchorLayer) OrderedDict([(2, (16 0 image_input[0][0]
__________________________________________________________________________________________________
info_input (InfoInput) [(8, 5)] 0
__________________________________________________________________________________________________
MLP (MultilevelProposal) ((8, 1000), (8, 1000 0 permute[0][0]
permute_2[0][0]
permute_4[0][0]
permute_6[0][0]
permute_8[0][0]
permute_1[0][0]
permute_3[0][0]
permute_5[0][0]
permute_7[0][0]
permute_9[0][0]
anchor_layer[0][0]
anchor_layer[0][1]
anchor_layer[0][2]
anchor_layer[0][3]
anchor_layer[0][4]
info_input[0][0]
__________________________________________________________________________________________________
multilevel_crop_resize (Multile (8, 1000, 256, 7, 7) 0 post_hoc_d2[0][0]
post_hoc_d3[0][0]
post_hoc_d4[0][0]
post_hoc_d5[0][0]
p6[0][0]
MLP[0][1]
__________________________________________________________________________________________________
box_head_reshape1 (ReshapeLayer (8000, 12544) 0 multilevel_crop_resize[0][0]
__________________________________________________________________________________________________
fc6 (Dense) (8000, 1024) 12846080 box_head_reshape1[0][0]
__________________________________________________________________________________________________
fc7 (Dense) (8000, 1024) 1049600 fc6[0][0]
__________________________________________________________________________________________________
class-predict (Dense) (8000, 2) 2050 fc7[0][0]
__________________________________________________________________________________________________
box-predict (Dense) (8000, 8) 8200 fc7[0][0]
__________________________________________________________________________________________________
box_head_reshape2 (ReshapeLayer (8, 1000, 2) 0 class-predict[0][0]
__________________________________________________________________________________________________
box_head_reshape3 (ReshapeLayer (8, 1000, 8) 0 box-predict[0][0]
__________________________________________________________________________________________________
gpu_detections (GPUDetections) ((8,), (8, 100, 4), 0 box_head_reshape2[0][0]
box_head_reshape3[0][0]
MLP[0][1]
info_input[0][0]
__________________________________________________________________________________________________
multilevel_crop_resize_1 (Multi (8, 100, 256, 14, 14 0 post_hoc_d2[0][0]
post_hoc_d3[0][0]
post_hoc_d4[0][0]
post_hoc_d5[0][0]
p6[0][0]
gpu_detections[0][1]
__________________________________________________________________________________________________
mask_head_reshape_1 (ReshapeLay (800, 256, 14, 14) 0 multilevel_crop_resize_1[0][0]
__________________________________________________________________________________________________
mask-conv-l0 (Conv2D) (800, 256, 14, 14) 590080 mask_head_reshape_1[0][0]
__________________________________________________________________________________________________
mask-conv-l1 (Conv2D) (800, 256, 14, 14) 590080 mask-conv-l0[0][0]
__________________________________________________________________________________________________
mask-conv-l2 (Conv2D) (800, 256, 14, 14) 590080 mask-conv-l1[0][0]
__________________________________________________________________________________________________
mask-conv-l3 (Conv2D) (800, 256, 14, 14) 590080 mask-conv-l2[0][0]
__________________________________________________________________________________________________
conv5-mask (Conv2DTranspose) (800, 256, 28, 28) 262400 mask-conv-l3[0][0]
__________________________________________________________________________________________________
mask_fcn_logits (Conv2D) (800, 2, 28, 28) 514 conv5-mask[0][0]
__________________________________________________________________________________________________
mask_postprocess (MaskPostproce (8, 100, 28, 28) 0 mask_fcn_logits[0][0]
gpu_detections[0][2]
__________________________________________________________________________________________________
mask_sigmoid (Activation) (8, 100, 28, 28) 0 mask_postprocess[0][0]
==================================================================================================
Total params: 24,646,107
Trainable params: 4,822,784
Non-trainable params: 19,823,323
__________________________________________________________________________________________________
INFO:tensorflow:Done calling model_fn.
2025-01-09 12:47:07,435 [TAO Toolkit] [INFO] tensorflow 1150: Done calling model_fn.
INFO:tensorflow:Graph was finalized.
2025-01-09 12:47:07,729 [TAO Toolkit] [INFO] tensorflow 240: Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpzvprwraj/model.ckpt-175000
2025-01-09 12:47:07,731 [TAO Toolkit] [INFO] tensorflow 1284: Restoring parameters from /tmp/tmpzvprwraj/model.ckpt-175000
INFO:tensorflow:Running local_init_op.
2025-01-09 12:47:08,006 [TAO Toolkit] [INFO] tensorflow 500: Running local_init_op.
INFO:tensorflow:Done running local_init_op.
2025-01-09 12:47:08,034 [TAO Toolkit] [INFO] tensorflow 502: Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 175000 into /tmp/tmp2p82l2u2/model.ckpt.
2025-01-09 12:47:08,895 [TAO Toolkit] [INFO] tensorflow 606: Saving checkpoints for 175000 into /tmp/tmp2p82l2u2/model.ckpt.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/mask_rcnn/export/exporter.py:244: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
2025-01-09 12:47:19,956 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/mask_rcnn/export/exporter.py:244: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
INFO:tensorflow:Restoring parameters from /tmp/tmp2p82l2u2/model.ckpt-175000
2025-01-09 12:47:20,163 [TAO Toolkit] [INFO] tensorflow 1284: Restoring parameters from /tmp/tmp2p82l2u2/model.ckpt-175000
INFO:tensorflow:Froze 107 variables.
2025-01-09 12:47:20,457 [TAO Toolkit] [INFO] tensorflow 334: Froze 107 variables.
INFO:tensorflow:Converted 107 variables to const ops.
2025-01-09 12:47:20,540 [TAO Toolkit] [INFO] tensorflow 394: Converted 107 variables to const ops.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/mask_rcnn/export/exporter.py:287: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead.
2025-01-09 12:47:20,732 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/mask_rcnn/export/exporter.py:287: The name tf.reset_default_graph is deprecated. Please use tf.compat.v1.reset_default_graph instead.
2025-01-09 12:47:20,733 [TAO Toolkit] [INFO] numba.cuda.cudadrv.driver 266: init
NOTE: UFF has been tested with TensorFlow 1.15.0.
WARNING: The version of TensorFlow installed on this system is not guaranteed to work with UFF.
Warning: No conversion function registered for layer: MultilevelCropAndResize_TRT yet.
Converting pyramid_crop_and_resize_mask as custom op: MultilevelCropAndResize_TRT
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/uff/converters/tensorflow/converter.py:226: The name tf.AttrValue is deprecated. Please use tf.compat.v1.AttrValue instead.
2025-01-09 12:47:20,995 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/uff/converters/tensorflow/converter.py:226: The name tf.AttrValue is deprecated. Please use tf.compat.v1.AttrValue instead.
Warning: No conversion function registered for layer: ResizeNearest_TRT yet.
Converting nearest_upsampling_2 as custom op: ResizeNearest_TRT
Warning: No conversion function registered for layer: ResizeNearest_TRT yet.
Converting nearest_upsampling_1 as custom op: ResizeNearest_TRT
Warning: No conversion function registered for layer: ResizeNearest_TRT yet.
Converting nearest_upsampling as custom op: ResizeNearest_TRT
Warning: No conversion function registered for layer: SpecialSlice_TRT yet.
Converting mrcnn_detection_bboxes as custom op: SpecialSlice_TRT
Warning: No conversion function registered for layer: GenerateDetection_TRT yet.
Converting generate_detections as custom op: GenerateDetection_TRT
Warning: No conversion function registered for layer: MultilevelProposeROI_TRT yet.
Converting multilevel_propose_rois as custom op: MultilevelProposeROI_TRT
Warning: No conversion function registered for layer: MultilevelCropAndResize_TRT yet.
Converting pyramid_crop_and_resize_box as custom op: MultilevelCropAndResize_TRT
DEBUG [/usr/local/lib/python3.8/dist-packages/uff/converters/tensorflow/converter.py:143] Marking ['generate_detections', 'mask_fcn_logits/BiasAdd'] as outputs
2025-01-09 12:47:21,217 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.mask_rcnn.export.exporter 300: **Converted model was saved into /workspace/tao-experiments/mask_rcnn/experiment_dir_unpruned/model.epoch-5.uff**
loading annotations into memory...
Done (t=1.15s)
creating index...
index created!
[01/09/2025-12:47:22] [TRT] [I] [MemUsageChange] Init CUDA: CPU +12, GPU +0, now: CPU 654, GPU 848 (MiB)
[01/09/2025-12:47:23] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +546, GPU +118, now: CPU 1254, GPU 966 (MiB)
[01/09/2025-12:47:24] [TRT] [W] The implicit batch dimension mode has been deprecated. Please create the network with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag whenever possible.
[01/09/2025-12:47:24] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +1, GPU +10, now: CPU 1477, GPU 974 (MiB)
[01/09/2025-12:47:24] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +1, GPU +10, now: CPU 1478, GPU 984 (MiB)
[01/09/2025-12:47:24] [TRT] [I] Local timing cache in use. Profiling results in this builder pass will not be stored.
[01/09/2025-12:47:36] [TRT] [I] Some tactics do not have sufficient workspace memory to run. Increasing workspace size will enable more tactics, please check verbose output for requested sizes.
[01/09/2025-12:49:33] [TRT] [I] [GraphReduction] The approximate region cut reduction algorithm is called.
[01/09/2025-12:49:33] [TRT] [I] Total Activation Memory: 10870064128
[01/09/2025-12:49:33] [TRT] [I] Detected 1 inputs and 2 output network tensors.
[01/09/2025-12:49:33] [TRT] [I] Total Host Persistent Memory: 125232
[01/09/2025-12:49:33] [TRT] [I] Total Device Persistent Memory: 5828608
[01/09/2025-12:49:33] [TRT] [I] Total Scratch Memory: 854353408
[01/09/2025-12:49:33] [TRT] [I] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 67 MiB, GPU 3069 MiB
[01/09/2025-12:49:33] [TRT] [I] [BlockAssignment] Started assigning block shifts. This will take 118 steps to complete.
[01/09/2025-12:49:33] [TRT] [I] [BlockAssignment] Algorithm ShiftNTopDown took 10.272ms to assign 20 blocks to 118 nodes requiring 2348518400 bytes.
[01/09/2025-12:49:33] [TRT] [I] Total Activation Memory: 2348518400
[01/09/2025-12:49:34] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 1894, GPU 1094 (MiB)
[01/09/2025-12:49:34] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +1, GPU +10, now: CPU 1895, GPU 1104 (MiB)
[01/09/2025-12:49:34] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +19, GPU +100, now: CPU 19, GPU 100 (MiB)
Execution status: PASS
2025-01-09 18:19:44,045 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 363: Stopping container.
Please help.
Thanks.