Please provide complete information as applicable to your setup.
• Hardware Platform (Jetson / GPU) 1080 Ti
• DeepStream Version 5.0
• JetPack Version (valid for Jetson only)
• TensorRT Version 7.0.0.1
• NVIDIA GPU Driver Version (valid for GPU only) 450.80.02
• Issue Type( questions, new requirements, bugs) bugs/question
• How to reproduce the issue ? (This is for bugs. Including which sample app is using, the configuration files content, the command line used and other details for reproducing)
• Requirement details( This is for new requirement. Including the module name-for which plugin or for which sample application, the function description)
Hello, I’m train the model using TLT - ResNet18 simple classifier. It works perfect with tlt-infer or with clear TensorRT app. But when I try to use it inside DS pipeline as secondary model it doesn’t work.
I’ve use the following config and preprocessing parameters as described there.
[property]
gpu-id=0
net-scale-factor=1.0
offsets=123.67;116.28;103.53
model-color-format=1
infer-dims=3;224;224
uff-input-order=0
uff-input-blob-name=input_1
batch-size=1
model-engine-file=resnet18_version2_classifier_bs_1_res_224_fp32.engine
labelfile-path=labels.txt
#force-implicit-batch-dim=1
output-blob-names=predictions/Softmax
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
process-mode=2
network-type=1
#classifier-async-mode=0
classifier-threshold=0.0
#input-object-min-width=64
#input-object-min-height=64
operate-on-gie-id=1
operate-on-class-ids=0;1;
gie-unique-id=4
output-tensor-meta=1
I can’t get proper predictions inside deepstream app. I get rare predictions and class_id=0. I add tensor-meta to see predictions, and predictions/Softmax layer even not listed in probe.
I try default sgie1 model config_infer_secondary_vehicletypes.txt and get all detections and see predictions/Softmax in probe:
[property]
gpu-id=0
net-scale-factor=1
model-file=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/resnet18.caffemodel
proto-file=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/resnet18.prototxt
#model-engine-file=/opt/nvidia/deepstream/deepstream-5.0/samples/models/Secondary_VehicleTypes/resnet18.caffemodel_b1_gpu0_fp16.engine
#int8-calib-file=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/cal_trt.bin
#mean-file=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/mean.ppm
labelfile-path=/opt/nvidia/deepstream/deepstream/samples/models/Secondary_VehicleTypes/labels.txt
force-implicit-batch-dim=1
batch-size=1
model-color-format=1
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=2
network-type=1
output-blob-names=predictions/Softmax
classifier-async-mode=0
classifier-threshold=0.01
input-object-min-width=128
input-object-min-height=128
operate-on-gie-id=1
operate-on-class-ids=0;1;
gie-unique-id=4
output-tensor-meta=1
is-classifier=1
#scaling-filter=0
#scaling-compute-hw=0
I’ve tried the same configurations for my model and don’t get any result also:
[property]
gpu-id=0
net-scale-factor=1
model-color-format=0
infer-dims=3;224;224
uff-input-order=0
uff-input-blob-name=input_1
batch-size=1
#onnx-file=/home/rostislav/trt_converter/res18_simple.onnx
#model-engine-file=/home/rostislav/onnx_trt_converter/export/resnet18_bs-1_res-(224, 224).engine
#model-engine-file=/home/rostislav/trt_converter/resnet18_engine_classifier.buf
model-engine-file=/home/rostislav/tlt_data/resnet18_version2_classifier_bs_1_res_224_fp32.engine
labelfile-path=labels_grocery.txt
force-implicit-batch-dim=1
output-blob-names=predictions/Softmax
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=0
process-mode=2
network-type=1
#classifier-async-mode=0
classifier-threshold=0.0
#input-object-min-width=64
#input-object-min-height=64
operate-on-gie-id=1
operate-on-class-ids=0;1;
gie-unique-id=4
output-tensor-meta=1
Could somebody explain me how to correctly setup sgie classification model for deepstream pipeline and which preprocessing parameters should I use for TLT model inside DS?