Tool for KITTI annotations

Please provide the following information when requesting support.

Hardware (T4/V100/Xavier/Nano/etc)
geforce 3090
• Network Type (Detectnet_v2/Faster_rcnn/Yolo_v4/LPRnet/Mask_rcnn/Classification/etc)
Detectnet_v2
• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here)

tao info --verbose
Configuration of the TAO Toolkit Instance

dockers: 		
	nvidia/tao/tao-toolkit: 			
		4.0.0-tf2.9.1: 				
			docker_registry: nvcr.io
			tasks: 
				1. classification_tf2
				2. efficientdet_tf2
		4.0.0-tf1.15.5: 				
			docker_registry: nvcr.io
			tasks: 
				1. augment
				2. bpnet
				3. classification_tf1
				4. detectnet_v2
				5. dssd
				6. emotionnet
				7. efficientdet_tf1
				8. faster_rcnn
				9. fpenet
				10. gazenet
				11. gesturenet
				12. heartratenet
				13. lprnet
				14. mask_rcnn
				15. multitask_classification
				16. retinanet
				17. ssd
				18. unet
				19. yolo_v3
				20. yolo_v4
				21. yolo_v4_tiny
				22. converter
		4.0.1-tf1.15.5: 				
			docker_registry: nvcr.io
			tasks: 
				1. mask_rcnn
				2. unet
		4.0.0-pyt: 				
			docker_registry: nvcr.io
			tasks: 
				1. action_recognition
				2. deformable_detr
				3. segformer
				4. re_identification
				5. pointpillars
				6. pose_classification
				7. n_gram
				8. speech_to_text
				9. speech_to_text_citrinet
				10. speech_to_text_conformer
				11. spectro_gen
				12. vocoder
				13. text_classification
				14. question_answering
				15. token_classification
				16. intent_slot_classification
				17. punctuation_and_capitalization
format_version: 2.0
toolkit_version: 4.0.1
published_date: 03/06/2023

I am trying to retrain traficcamnet model with my custom dataset. What is the best tool to create KITTI annotations?

Do you mean the label tool?

Yes, basically I will run the current model to annotate as much as it can and I would like to verify using a label tool to fix wrong annotations and add missing annotations.

You can try labelme or cvat.

For example, Mask_rcnn shows training logs loss 0.00000 fast_rcnn class loss: 0.00000 fast_rcnn box loss: 0.00000 - #2
Kitti confidence values in inference labels - #2 by Morganh

1 Like

Thanks! I will check those out

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.