Torch.onnx.export with dynamic size for craft

Description

i produced pth model and then onnx with dynnamic axes
but when i want to build an trt engine from it
i get :
[TensorRT] ERROR: Parameter check failed at: …/builder/Network.cpp::addInput::671, condition: isValidDims(dims, hasImplicitBatchDimension())
is_success False
In node -1 (importInput): UNSUPPORTED_NODE: Assertion failed: *tensor = importer_ctx->network()->addInput( input.name().c_str(), trt_dtype, trt_dims)
[TensorRT] ERROR: Network must have at least one output

Environment

TensorRT Version: 6.0.5.8
GPU Type:1050 Ti
Nvidia Driver Version:
CUDA Version: 10.2
CUDNN Version: 7.6.5
Operating System + Version: ubuntu 18
Python Version (if applicable): 3.6
TensorFlow Version (if applicable): no
PyTorch Version (if applicable): 1.6 (1.2 tested too)
Baremetal or Container (if container which image + tag): no

Relevant Files

get craft model from craft_pytorch repo in github

Please attach or include links to any models, data, files, or scripts necessary to reproduce your issue. (Github repo, Google Drive, Dropbox, etc.)

Steps To Reproduce

part of export to onnx :

    input_batch = 1
    input_channel = 3
    input_h = 448
    input_w = 448
    output_batch = input_batch
    output_h = input_h / 2
    output_w = input_w / 2
    inputc = torch.randn(input_batch, input_channel, \
        input_h, input_w, device='cuda')

    outputc = net(inputc.cuda())
    output_names = ["output1","output2"]
    input_names = ["inputc"]
    dynamic_axes = {'inputc': { 2: "inputc_h", 3: 'inputc_w'},'output1': { 2: "output1_h", 3: 'output1_w'} , 'output2': { 2: "output2_h", 3: 'output2_w'}}


    torch.onnx.export(
                     net,
                     inputc,
                     'craft5.onnx',
                     export_params=True,        # store the trained parameter weights inside the model file
                     opset_version=10,          # the ONNX version to export the model to
                     do_constant_folding=True,  # whether to execute constant folding for optimization
                    #opset_version=11,
                     verbose=True,
                     input_names=['inputc'],
                     output_names=['output1','output2'],
                     dynamic_axes=dynamic_axes,)


def build_engine_onnx(model_file):
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
    builder.max_workspace_size = 1 << 30
   
    # Load the Onnx model and parse it in order to populate the TensorRT network.
    with open(model_file, 'rb') as model:
        is_success = parser.parse(model.read())
        print('is_success',is_success)
        if not is_success:
            for error in range(parser.num_errors):
                print(parser.get_error(error))
    return builder.build_cuda_engine(network)

solutions that not worked

expilict batch is set to1 and network but dosn’t worked
change pytorch version from 1.6 to 1.2
i don’t think that updating to tensorrt7 would work

Hi,
Request you to share the ONNX model and the script if not shared already so that we can assist you better.
Alongside you can try few things:

  1. validating your model with the below snippet

check_model.py

import sys
import onnx
filename = yourONNXmodel
model = onnx.load(filename)
onnx.checker.check_model(model).
2) Try running your model with trtexec command.
https://github.com/NVIDIA/TensorRT/tree/master/samples/opensource/trtexec
In case you are still facing issue, request you to share the trtexec “”–verbose"" log for further debugging
Thanks!

i also checked this and its had not any problem with model checker and netron app.

i used this link:

my full script to produce craft.onnx with dynamic size:

"""  
Copyright (c) 2019-present NAVER Corp.
MIT License
"""

# -*- coding: utf-8 -*-
import sys
import os
import time
import argparse

import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.autograd import Variable

from PIL import Image

import cv2
from skimage import io
import numpy as np
import craft_utils
import imgproc
import file_utils
import json
import zipfile
import random

from craft import CRAFT

from collections import OrderedDict
def copyStateDict(state_dict):
    if list(state_dict.keys())[0].startswith("module"):
        start_idx = 1
    else:
        start_idx = 0
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = ".".join(k.split(".")[start_idx:])
        new_state_dict[name] = v
    return new_state_dict

def str2bool(v):
    return v.lower() in ("yes", "y", "true", "t", "1")

parser = argparse.ArgumentParser(description='CRAFT Text Detection')
parser.add_argument('--trained_model', default='weights/craft_mlt_25k.pth', type=str, help='pretrained model')
parser.add_argument('--text_threshold', default=0.7, type=float, help='text confidence threshold')
parser.add_argument('--low_text', default=0.4, type=float, help='text low-bound score')
parser.add_argument('--link_threshold', default=0.4, type=float, help='link confidence threshold')
parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda for inference')
parser.add_argument('--canvas_size', default=1280, type=int, help='image size for inference')
parser.add_argument('--mag_ratio', default=1.5, type=float, help='image magnification ratio')
parser.add_argument('--poly', default=False ,action='store_true', help='enable polygon type')
parser.add_argument('--show_time', default=False, action='store_true', help='show processing time')
parser.add_argument('--test_folder', default='data/', type=str, help='folder path to input images')
parser.add_argument('--refine', default=False, action='store_true', help='enable link refiner')
parser.add_argument('--refiner_model', default='weights/craft_refiner_CTW1500.pth', type=str, help='pretrained refiner model')

args = parser.parse_args()


""" For test images in a folder """
image_list, _, _ = file_utils.get_files(args.test_folder)

print(image_list)

result_folder = './result/'
if not os.path.isdir(result_folder):
    os.mkdir(result_folder)

def chinese_num(line):
    total = 0
    for u_char in line:
        if (u_char >= u'\u2f00' and u_char<=u'\u2fd5') or (u_char >= u'\u4e00' and u_char<=u'\u9fa5'):
            total += 1
    return total

def test_net(net, image, text_threshold, link_threshold, low_text, cuda, poly, refine_net=None):
    t0 = time.time()

    # resize
    img_resized, target_ratio, size_heatmap = imgproc.resize_aspect_ratio(image, args.canvas_size, interpolation=cv2.INTER_LINEAR, mag_ratio=args.mag_ratio)
    ratio_h = ratio_w = 1 / target_ratio

    # preprocessing
    x = imgproc.normalizeMeanVariance(img_resized)
    x = torch.from_numpy(x).permute(2, 0, 1)    # [h, w, c] to [c, h, w]
    x = Variable(x.unsqueeze(0))                # [c, h, w] to [b, c, h, w]
    if cuda:
        x = x.cuda()

    # forward pass
    with torch.no_grad():
        y, feature = net(x)

    # make score and link map
    score_text = y[0,:,:,0].cpu().data.numpy()
    score_link = y[0,:,:,1].cpu().data.numpy()

    # refine link
    if refine_net is not None:
        with torch.no_grad():
            y_refiner = refine_net(y, feature)
        score_link = y_refiner[0,:,:,0].cpu().data.numpy()

    t0 = time.time() - t0
    t1 = time.time()

    # Post-processing
    boxes, polys = craft_utils.getDetBoxes(score_text, score_link, text_threshold, link_threshold, low_text, poly)

    #Cords_list = []

    #for i,box in enumerate(boxes):
    #    Cords = craft_utils.getVerticalCord(box,score_link,link_threshold,i)
    #    Cords = craft_utils.adjustResultCoordinates(Cords, ratio_w, ratio_h)
    #    Cords_list.append(Cords)

    # coordinate adjustment
    boxes = craft_utils.adjustResultCoordinates(boxes, ratio_w, ratio_h)
    polys = craft_utils.adjustResultCoordinates(polys, ratio_w, ratio_h)
    
    for k in range(len(polys)):
        if polys[k] is None: polys[k] = boxes[k]

    t1 = time.time() - t1

    # render results (optional)
    render_img = score_text.copy()
    render_img = np.hstack((render_img, score_link))
    ret_score_text = imgproc.cvt2HeatmapImg(render_img)

    if args.show_time : print("\ninfer/postproc time : {:.3f}/{:.3f}".format(t0, t1))

    #print(boxes, polys, ret_score_text)

    #return boxes, polys, ret_score_text ,Cords_list
    return boxes, polys, ret_score_text


def find_one_line(array_dic):
    #list_1 = list_1_array[0]
    final_res = {}
    flag = 0
    for index in sorted(txt_result.keys()):
        if index in txt_result:
            list_1 = txt_result[index]
            final_res[index] = []
            #txt_result.pop(index)
            y0 = (list_1[0][1] + list_1[0][7]) / 2
            w = abs(list_1[0][7] - list_1[0][1])
            for index_t in sorted(txt_result.keys()):
                item = txt_result[index_t]
                y = (item[0][1] + item[0][7]) / 2
                if abs(y - y0) < w/2:
                    final_res[index].append(item)
                    txt_result.pop(index_t)
    print(final_res)
    return final_res


def sorted_by_y(array):
    y_list = []
    for i in range(len(array)):
        y_list.append(int(array[i][0][0]))

    index_list = np.argsort(y_list)
    return index_list


if __name__ == '__main__':
    # load net
    #res = open('res.txt','w',encoding='utf8')
    net = CRAFT()     # initialize

    print('Loading weights from checkpoint (' + args.trained_model + ')')
    if args.cuda:
        net.load_state_dict(copyStateDict(torch.load(args.trained_model)))
    else:
        net.load_state_dict(copyStateDict(torch.load(args.trained_model, map_location='cpu')))



    if args.cuda:
        net = net.cuda()
        
        input_batch = 1
        input_channel = 3
        input_h = 448
        input_w = 448
        output_batch = input_batch
        output_h = input_h / 2
        output_w = input_w / 2
        inputc = torch.randn(input_batch, input_channel, \
            input_h, input_w, device='cuda')

        outputc = net(inputc.cuda())
        output_names = ["output1","output2"]
        input_names = ["inputc"]
        dynamic_axes = {'inputc': { 2: "inputc_h", 3: 'inputc_w'},'output1': { 2: "output1_h", 3: 'output1_w'} , 'output2': { 2: "output2_h", 3: 'output2_w'}}


        torch.onnx.export(
                         net,
                         inputc,
                         'craft5.onnx',
                         export_params=True,        # store the trained parameter weights inside the model file
                         opset_version=10,          # the ONNX version to export the model to
                         do_constant_folding=True,  # whether to execute constant folding for optimization
                        #opset_version=11,
                         verbose=True,
                         input_names=['inputc'],
                         output_names=['output1','output2'],
                         dynamic_axes=dynamic_axes,
                        )
        
        net = torch.nn.DataParallel(net)
        cudnn.benchmark = False

    net.eval()

Hi @sabrahashemi,

Please refer following similar issues, which may help you. Please let us know if you still face the issue.
https://github.com/NVIDIA/TensorRT/issues/183
https://github.com/NVIDIA/TensorRT/issues/37

Thank you.

i can produce onnx model but when i want to use it it has errors like:

[TensorRT] ERROR: Parameter check failed at: …/builder/Network.cpp::addInput::671, condition: isValidDims(dims, hasImplicitBatchDimension())
is_success False
In node -1 (importInput): UNSUPPORTED_NODE: Assertion failed: *tensor = importer_ctx->network()->addInput( input.name().c_str(), trt_dtype, trt_dims)
[TensorRT] ERROR: Network must have at least one output

i believe that this is related to tensorrt or onnx parser, but i dont know how, can you reproduce error?

i used solution that have been suggest in these two threads
can you reproduce problem?
i believe this is about tensorrt onnx parser.

Hi @sabrahashemi,

Looks like you’re using very old version of TensorRT. We request you to please try on latest TensorRT version 8.0.
Please let us know if you still face this issue. We recommend you to please share ONNX model and script/steps to reproduce the issue.

Thank you.