Can't run https://github.com/dusty-nv/jetson-inference/blob/master/docs/imagenet-console-2.md on jetpack 6.1

The jetpack I have installed is 6.1

./imagenet.py images/orange_0.jpg images/test/output_0.jpg

imageNet – loading classification network model from:
– prototxt networks/Googlenet/googlenet.prototxt
– model networks/Googlenet/bvlc_googlenet.caffemodel
– class_labels networks/ilsvrc12_synset_words.txt
– input_blob ‘data’
– output_blob ‘prob’
– batch_size 1

[TRT] TensorRT version 10.3.0
[TRT] loading NVIDIA plugins…
[TRT] Registered plugin creator - ::BatchedNMSDynamic_TRT version 1
[TRT] Registered plugin creator - ::BatchedNMS_TRT version 1
[TRT] Registered plugin creator - ::BatchTilePlugin_TRT version 1
[TRT] Registered plugin creator - ::Clip_TRT version 1
[TRT] Registered plugin creator - ::CoordConvAC version 1
[TRT] Registered plugin creator - ::CropAndResizeDynamic version 1
[TRT] Registered plugin creator - ::CropAndResize version 1
[TRT] Registered plugin creator - ::DecodeBbox3DPlugin version 1
[TRT] Registered plugin creator - ::DetectionLayer_TRT version 1
[TRT] Registered plugin creator - ::EfficientNMS_Explicit_TF_TRT version 1
[TRT] Registered plugin creator - ::EfficientNMS_Implicit_TF_TRT version 1
[TRT] Registered plugin creator - ::EfficientNMS_ONNX_TRT version 1
[TRT] Registered plugin creator - ::EfficientNMS_TRT version 1
[TRT] Could not register plugin creator - ::FlattenConcat_TRT version 1
[TRT] Registered plugin creator - ::GenerateDetection_TRT version 1
[TRT] Registered plugin creator - ::GridAnchor_TRT version 1
[TRT] Registered plugin creator - ::GridAnchorRect_TRT version 1
[TRT] Registered plugin creator - ::InstanceNormalization_TRT version 1
[TRT] Registered plugin creator - ::InstanceNormalization_TRT version 2
[TRT] Registered plugin creator - ::InstanceNormalization_TRT version 3
[TRT] Registered plugin creator - ::LReLU_TRT version 1
[TRT] Registered plugin creator - ::ModulatedDeformConv2d version 1
[TRT] Registered plugin creator - ::MultilevelCropAndResize_TRT version 1
[TRT] Registered plugin creator - ::MultilevelProposeROI_TRT version 1
[TRT] Registered plugin creator - ::MultiscaleDeformableAttnPlugin_TRT version 1
[TRT] Registered plugin creator - ::NMSDynamic_TRT version 1
[TRT] Registered plugin creator - ::NMS_TRT version 1
[TRT] Registered plugin creator - ::Normalize_TRT version 1
[TRT] Registered plugin creator - ::PillarScatterPlugin version 1
[TRT] Registered plugin creator - ::PriorBox_TRT version 1
[TRT] Registered plugin creator - ::ProposalDynamic version 1
[TRT] Registered plugin creator - ::ProposalLayer_TRT version 1
[TRT] Registered plugin creator - ::Proposal version 1
[TRT] Registered plugin creator - ::PyramidROIAlign_TRT version 1
[TRT] Registered plugin creator - ::Region_TRT version 1
[TRT] Registered plugin creator - ::Reorg_TRT version 2
[TRT] Registered plugin creator - ::Reorg_TRT version 1
[TRT] Registered plugin creator - ::ResizeNearest_TRT version 1
[TRT] Registered plugin creator - ::ROIAlign_TRT version 1
[TRT] Registered plugin creator - ::ROIAlign_TRT version 2
[TRT] Registered plugin creator - ::RPROI_TRT version 1
[TRT] Registered plugin creator - ::ScatterElements version 2
[TRT] Registered plugin creator - ::ScatterElements version 1
[TRT] Registered plugin creator - ::ScatterND version 1
[TRT] Registered plugin creator - ::SpecialSlice_TRT version 1
[TRT] Registered plugin creator - ::Split version 1
[TRT] Registered plugin creator - ::VoxelGeneratorPlugin version 1
[TRT] completed loading NVIDIA plugins.
[TRT] detected model format - caffe (extension ‘.caffemodel’)
[TRT] desired precision specified for GPU: FASTEST
[TRT] requested fasted precision for device GPU without providing valid calibrator, disabling INT8
[TRT] [MemUsageChange] Init CUDA: CPU +13, GPU +0, now: CPU 41, GPU 3970 (MiB)
[TRT] Trying to load shared library libnvinfer_builder_resource.so.10.3.0
[TRT] Loaded shared library libnvinfer_builder_resource.so.10.3.0
[TRT] [MemUsageChange] Init builder kernel library: CPU +927, GPU +1103, now: CPU 1011, GPU 5129 (MiB)
[TRT] CUDA lazy loading is enabled.
[TRT] native precisions detected for GPU: FP32, FP16, INT8
[TRT] selecting fastest native precision for GPU: FP16
[TRT] could not find engine cache networks/Googlenet/bvlc_googlenet.caffemodel.1.1.100300.GPU.FP16.engine
[TRT] cache file invalid, profiling network model on device GPU
[TRT] [MemUsageChange] Init CUDA: CPU +0, GPU +0, now: CPU 85, GPU 5089 (MiB)
[TRT] Trying to load shared library libnvinfer_builder_resource.so.10.3.0
[TRT] Loaded shared library libnvinfer_builder_resource.so.10.3.0
[TRT] [MemUsageChange] Init builder kernel library: CPU +926, GPU +108, now: CPU 1011, GPU 5198 (MiB)
[TRT] CUDA lazy loading is enabled.
[TRT] device GPU, loading networks/Googlenet/googlenet.prototxt networks/Googlenet/bvlc_googlenet.caffemodel
[TRT] TensorRT 10.3 does not support legacy caffe models
[TRT] device GPU, failed to load networks/Googlenet/bvlc_googlenet.caffemodel
[TRT] failed to load networks/Googlenet/bvlc_googlenet.caffemodel
[TRT] imageNet – failed to initialize.
Traceback (most recent call last):
File “imagenet.py”, line 49, in
net = imageNet(args.network, sys.argv)
Exception: jetson.inference – imageNet failed to load network

I also tried below command, it results in segmentation fault.

./imagenet.py --network=resnet18_tagging_voc images/coral.jpg images/test/output_coral.jpg

Here is the truncated message:
“Layer(CaskConvolution): Conv_37, Tactic: 0xe1ff5ad20f5c6bf6, onnx::Conv_175 (Half[1,512:8,7,7]) → onnx::Add_241 (Half[1,512:8,7,7])
Layer(CaskConvolution): Conv_38 + Add_39 + Relu_40, Tactic: 0xf35e0311fa1cc516, input.112 (Half[1,256:8,14,14]), onnx::Add_241 (Half[1,512:8,7,7]) → input.132 (Half[1,512:8,7,7])
Layer(CaskConvolution): Conv_41 + Relu_42, Tactic: 0xe1ff5ad20f5c6bf6, input.132 (Half[1,512:8,7,7]) → onnx::Conv_184 (Half[1,512:8,7,7])
Layer(CaskConvolution): Conv_43 + Add_44 + Relu_45, Tactic: 0x5820b3dda403c4d0, onnx::Conv_184 (Half[1,512:8,7,7]), input.132 (Half[1,512:8,7,7]) → input.148 (Half[1,512:8,7,7])
Layer(CaskPooling): GlobalAveragePool_46, Tactic: 0x56d7b61f084f251e, input.148 (Half[1,512:8,7,7]) → onnx::Flatten_189 (Half[1,512:8,1,1])
Layer(Myelin): {ForeignNode[Flatten_47…Sigmoid_49]}, Tactic: 0x0000000000000000, onnx::Flatten_189 (Half[1,512:8,1,1]) → output_0 (Float[1,20])
[TRT] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 4 MiB, GPU 56 MiB
[TRT] Adding 1 engine(s) to plan file.
[TRT] [MemUsageStats] Peak memory usage during Engine building and serialization: CPU: 1843 MiB
[TRT] Serializing timing cache. UUID = GPU-bcfb3b33-5dc6-52e8-879f-17bc08297370, commit ID = 78d1a8635767353c
[TRT] Serialized 26 bytes of code generator cache.
[TRT] Serialized 18817 bytes of compilation cache.
[TRT] Serialized 781 timing cache entries
[TRT] saving timing cache to /usr/local/bin/networks/tensorrt.100300.timingcache (100239 bytes)
[TRT] network profiling complete, saving engine cache to networks/ResNet18-Tagging-VOC/resnet18.onnx.1.1.100300.GPU.FP16.engine
[TRT] device GPU, completed saving engine cache to networks/ResNet18-Tagging-VOC/resnet18.onnx.1.1.100300.GPU.FP16.engine
[TRT] saving model checksum to networks/ResNet18-Tagging-VOC/resnet18.onnx.sha256sum
[TRT] sha256sum networks/ResNet18-Tagging-VOC/resnet18.onnx | awk ‘{print $1}’ > networks/ResNet18-Tagging-VOC/resnet18.onnx.sha256sum
[TRT] device GPU, loaded networks/ResNet18-Tagging-VOC/resnet18.onnx
[TRT] Loaded engine size: 21 MiB
[TRT] Deserialization required 13519 microseconds.
[TRT] Total per-runner device persistent memory is 0
[TRT] Total per-runner host persistent memory is 119872
[TRT] Allocated device scratch memory of size 2408448
[TRT] - Runner scratch: 2408448 bytes
[TRT] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +2, now: CPU 0, GPU 23 (MiB)
[TRT] CUDA lazy loading is enabled.
[TRT]
[TRT] CUDA engine context initialized on device GPU:
[TRT] – layers 25
[TRT] – maxBatchSize 1
[TRT] – deviceMemory 2408448
[TRT] – bindings 2
[TRT] binding 0
– index 0
– name ‘input_0’
– type Row major linear FP32 format (kLINEAR)
– in/out INPUT
– device DEVICE
– # dims 4
– dim #0 1
– dim #1 3
– dim #2 224
– dim #3 224
[TRT] binding 1
– index 1
– name ‘output_0’
– type Row major linear FP32 format (kLINEAR)
– in/out OUTPUT
– device DEVICE
– # dims 2
– dim #0 1
– dim #1 20
[TRT]
[TRT] binding to input 0 input_0 binding index: 0
[TRT] binding to input 0 input_0 dims (b=1 c=3 h=224 w=224) size=602112
[TRT] binding to output 0 output_0 binding index: 1
[TRT] binding to output 0 output_0 dims (b=1 c=1 h=20 w=0) size=80
Segmentation fault (core dumped)”

cheers,
mohit

Hi,

Caffe models are not supported on JetPack 6.1 anymore.

Please use JetPack 6.0 GA to run the jetson=inference sample.
Or switch to our Generative AI tutorial which can work correctly on the JetPack 6.1 environment.

Thanks.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.