Custom new model segmentation in DeepStream

I run with example Unet model:

  • pgie_unet_tao_config.yml:
    property:
    gpu-id: 0
    net-scale-factor: 0.007843
    model-color-format: 1
    offsets: 127.5;127.5;127.5
    labelfile-path: unet_labels.txt
    ##Replace following path to your model file
    model-engine-file: …/…/models/unet/unet_resnet18.etlt_b1_gpu0_fp16.engine
    #current DS cannot parse onnx etlt model, so you need to
    #convert the etlt model to TensoRT engine first use tao-convert
    tlt-encoded-model: …/…/models/unet/unet_resnet18.etlt
    tlt-model-key: tlt_encode
    infer-dims: 3;320;320
    batch-size: 1
    0=FP32, 1=INT8, 2=FP16 mode
    network-mode: 1
    num-detected-classes: 3
    interval: 0
    gie-unique-id: 1
    network-type: 2
    output-blob-names: softmax_1
    segmentation-threshold: 0.0
    ##specify the output tensor order, 0(default value) for CHW and 1 for HWC
    segmentation-output-order: 1

class-attrs-all:
roi-top-offset: 0
roi-bottom-offset: 0
detected-min-w: 0
detected-min-h: 0
detected-max-w: 0
detected-max-h: 0

Log run deepstream: