Error when writing frame extracted in probe function with cv2

I am able to run the application deepstream-test1 fine and even extract the frame in probe function and print its shape. but if i try to write that frame or as a video i get Segmentation fault (core dumped) error .

Deepstream version 6.1, cuda 11.7 in system, 11.6 is in docker.

code is :
#!/usr/bin/env python3

################################################################################

SPDX-FileCopyrightText: Copyright (c) 2019-2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

SPDX-License-Identifier: Apache-2.0

Licensed under the Apache License, Version 2.0 (the “License”);

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

Apache License, Version 2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an “AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

################################################################################

import sys
sys.path.append(‘…/’)
import gi
gi.require_version(‘Gst’, ‘1.0’)
from gi.repository import GLib, Gst
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
import numpy as np
import cv2

import pyds

PGIE_CLASS_ID_VEHICLE = 0
PGIE_CLASS_ID_BICYCLE = 1
PGIE_CLASS_ID_PERSON = 2
PGIE_CLASS_ID_ROADSIGN = 3

class VideoWriter:
def init(self):
fourcc = cv2.VideoWriter_fourcc(*‘XVID’)
self.out = cv2.VideoWriter(‘output.avi’, fourcc, 20.0, (1080, 1920))
def write(self,frame):
self.out.write(frame)

global video_writer
video_writer = VideoWriter()

def osd_sink_pad_buffer_probe(pad,info,u_data):
frame_number=0
#Intiallizing object counter with 0.
obj_counter = {
PGIE_CLASS_ID_VEHICLE:0,
PGIE_CLASS_ID_PERSON:0,
PGIE_CLASS_ID_BICYCLE:0,
PGIE_CLASS_ID_ROADSIGN:0
}
num_rects=0

gst_buffer = info.get_buffer()
if not gst_buffer:
    print("Unable to get GstBuffer ")
    return

# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
    try:
        # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
        # The casting is done by pyds.glist_get_nvds_frame_meta()
        # The casting also keeps ownership of the underlying memory
        # in the C code, so the Python garbage collector will leave
        # it alone.
        #frame_meta = pyds.glist_get_nvds_frame_meta(l_frame.data)
        frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
    except StopIteration:
        break

    frame_number=frame_meta.frame_num
    num_rects = frame_meta.num_obj_meta
    l_obj=frame_meta.obj_meta_list
    while l_obj is not None:
        try:
            # Casting l_obj.data to pyds.NvDsObjectMeta
            #obj_meta=pyds.glist_get_nvds_object_meta(l_obj.data)
            obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
        except StopIteration:
            break
        obj_counter[obj_meta.class_id] += 1
        obj_meta.rect_params.border_color.set(0.0, 0.0, 1.0, 0.0)
        try: 
            l_obj=l_obj.next
        except StopIteration:
            break

    # Acquiring a display meta object. The memory ownership remains in
    # the C code so downstream plugins can still access it. Otherwise
    # the garbage collector will claim it when this probe function exits.
    display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta)
    display_meta.num_labels = 1
    py_nvosd_text_params = display_meta.text_params[0]
    # Setting display text to be shown on screen
    # Note that the pyds module allocates a buffer for the string, and the
    # memory will not be claimed by the garbage collector.
    # Reading the display_text field here will return the C address of the
    # allocated string. Use pyds.get_string() to get the string content.
    py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Vehicle_count={} Person_count={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_VEHICLE], obj_counter[PGIE_CLASS_ID_PERSON])

    # Now set the offsets where the string should appear
    py_nvosd_text_params.x_offset = 10
    py_nvosd_text_params.y_offset = 12

    # Font , font-color and font-size
    py_nvosd_text_params.font_params.font_name = "Serif"
    py_nvosd_text_params.font_params.font_size = 10
    # set(red, green, blue, alpha); set to White
    py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0)

    # Text background color
    py_nvosd_text_params.set_bg_clr = 1
    # set(red, green, blue, alpha); set to Black
    py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0)
    # Using pyds.get_string() to get display_text as string
    print(pyds.get_string(py_nvosd_text_params.display_text))
    pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta)

    frame = pyds.get_nvds_buf_surface(hash(gst_buffer), frame_meta.batch_id)
    frame = frame[:,:,:3]
    frame  = frame[:,:,::-1]
    print(frame.shape)
    cv2.imwrite('./out.jpg',frame)
    # if frame_number%10==0:
    #     video_writer.write(frame)

    try:
        l_frame=l_frame.next
    except StopIteration:
        break
		
return Gst.PadProbeReturn.OK	

def main(args):
# Check input arguments

if len(args) != 2:
    sys.stderr.write("usage: %s <media file or uri>\n" % args[0])
    sys.exit(1)

# Standard GStreamer initialization
Gst.init(None)

# Create gstreamer elements
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()

if not pipeline:
    sys.stderr.write(" Unable to create Pipeline \n")

# Source element for reading from the file
print("Creating Source \n ")
source = Gst.ElementFactory.make("filesrc", "file-source")
if not source:
    sys.stderr.write(" Unable to create Source \n")

# Since the data format in the input file is elementary h264 stream,
# we need a h264parser
print("Creating H264Parser \n")
h264parser = Gst.ElementFactory.make("h264parse", "h264-parser")
if not h264parser:
    sys.stderr.write(" Unable to create h264 parser \n")

# Use nvdec_h264 for hardware accelerated decode on GPU
print("Creating Decoder \n")
decoder = Gst.ElementFactory.make("nvv4l2decoder", "nvv4l2-decoder")
if not decoder:
    sys.stderr.write(" Unable to create Nvv4l2 Decoder \n")

# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
    sys.stderr.write(" Unable to create NvStreamMux \n")

# Use nvinfer to run inferencing on decoder's output,
# behaviour of inferencing is set through config file
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not pgie:
    sys.stderr.write(" Unable to create pgie \n")

# Use convertor to convert from NV12 to RGBA as required by nvosd
nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
if not nvvidconv:
    sys.stderr.write(" Unable to create nvvidconv \n")

# Create OSD to draw on the converted RGBA buffer
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")

if not nvosd:
    sys.stderr.write(" Unable to create nvosd \n")

# Finally render the osd output
if is_aarch64():
    transform = Gst.ElementFactory.make("nvegltransform", "nvegl-transform")

print("Creating EGLSink \n")
sink = Gst.ElementFactory.make("fakesink", "fakesink")
if not sink:
    sys.stderr.write(" Unable to create egl sink \n")

print("Playing file %s " %args[1])
source.set_property('location', args[1])
streammux.set_property('width', 1920)
streammux.set_property('height', 1080)
streammux.set_property('batch-size', 1)
streammux.set_property('batched-push-timeout', 4000000)
pgie.set_property('config-file-path', "dstest1_pgie_config.txt")

print("Adding elements to Pipeline \n")
pipeline.add(source)
pipeline.add(h264parser)
pipeline.add(decoder)
pipeline.add(streammux)
pipeline.add(pgie)
pipeline.add(nvvidconv)
pipeline.add(nvosd)
pipeline.add(sink)
if is_aarch64():
    pipeline.add(transform)

# we link the elements together
# file-source -> h264-parser -> nvh264-decoder ->
# nvinfer -> nvvidconv -> nvosd -> video-renderer
print("Linking elements in the Pipeline \n")
source.link(h264parser)
h264parser.link(decoder)

sinkpad = streammux.get_request_pad("sink_0")
if not sinkpad:
    sys.stderr.write(" Unable to get the sink pad of streammux \n")
srcpad = decoder.get_static_pad("src")
if not srcpad:
    sys.stderr.write(" Unable to get source pad of decoder \n")
srcpad.link(sinkpad)
streammux.link(pgie)
pgie.link(nvvidconv)
nvvidconv.link(nvosd)
if is_aarch64():
    nvosd.link(transform)
    transform.link(sink)
else:
    nvosd.link(sink)

# create an event loop and feed gstreamer bus mesages to it
loop = GLib.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect ("message", bus_call, loop)

# Lets add probe to get informed of the meta data generated, we add probe to
# the sink pad of the osd element, since by that time, the buffer would have
# had got all the metadata.
osdsinkpad = nvosd.get_static_pad("sink")
if not osdsinkpad:
    sys.stderr.write(" Unable to get sink pad of nvosd \n")

osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)

# start play back and listen to events
print("Starting pipeline \n")
pipeline.set_state(Gst.State.PLAYING)
try:
    loop.run()
except:
    pass
# cleanup
pipeline.set_state(Gst.State.NULL)

if name == ‘main’:
sys.exit(main(sys.argv))

Please provide complete information as applicable to your setup.
• Hardware Platform (Jetson / GPU)
• DeepStream Version
• JetPack Version (valid for Jetson only)
• TensorRT Version
• NVIDIA GPU Driver Version (valid for GPU only)
• Issue Type( questions, new requirements, bugs)
• How to reproduce the issue ? (This is for bugs. Including which sample app is using, the configuration files content, the command line used and other details for reproducing)
• Requirement details( This is for new requirement. Including the module name-for which plugin or for which sample application, the function description)
• The pipeline being used

Here is the compatibility table, I’m not sure if DS-6.1 will run correctly on CUDA 11.6

https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Quickstart.html#platform-and-os-compatibility