I could run my script and i am able to get the output from the model… But the results are not same as i get using tlt-infer…
so this is my memory allocation function and image normalising function…
def allocate_buffers(engine):
h_input = cuda.pagelocked_empty(trt.volume(engine.get_binding_shape(0)), dtype=trt.nptype(trt.float32))
h_output = cuda.pagelocked_empty(trt.volume(engine.get_binding_shape(1)), dtype=trt.nptype(trt.float32))
# Allocate device memory for inputs and outputs.
d_input = cuda.mem_alloc(h_input.nbytes)
d_output = cuda.mem_alloc(h_output.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
stream = cuda.Stream()
return h_input, d_input, h_output, d_output, stream
def load_normalized_test_case(test_image, pagelocked_buffer):
# Converts the input image to a CHW Numpy array
def normalize_image(image):
# Resize, antialias and transpose the image to CHW.
c, h, w = 3,120,120
return np.asarray(image.resize((w, h), Image.ANTIALIAS)).transpose([2, 0, 1]).astype(trt.nptype(trt.float32)).ravel()
# Normalize the image and copy to pagelocked memory.
np.copyto(pagelocked_buffer, normalize_image(Image.open(test_image)))
return test_image
is the classification output i am getting is wrong because of something here?