Issue with http stream on NX-Xavier whille using deepstream-imagedata-multistream sample application

Hi Team,

I am using deepstream 6.1 on two different machine and there I am running deepstream-imagedata-multi-stream sample application with http stream.

Problem:
I am able to run http stream inside DS6.1 with deepstream-imagedata-multi-stream test app on dGPU (2080TI) system but when I am running the same http stream on Nx-Xavier I am getting issue mentioned below.

**PERF:  {'stream0': 0.0} 

Decodebin child added: decodebin0 

Decodebin child added: queue2-0 

Decodebin child added: multipartdemux0 

Decodebin child added: multiqueue0 

Decodebin child added: nvjpegdec0 


**PERF:  {'stream0': 0.0} 

In cb_newpad

Error: gst-stream-error-quark: Internal data stream error. (1): gstbasesrc.c(3072): gst_base_src_loop (): /GstPipeline:pipeline0/GstBin:source-bin-00/GstURIDecodeBin:uri-decode-bin/GstSoupHTTPSrc:source:
streaming stopped, reason not-negotiated (-4)
Exiting app

Please suggest what should I change in sample application so that it can run on NX-Xavier too with http stream (code working fine with rtsp only problem with http stream.).

sample application code:

################################################################################
# SPDX-FileCopyrightText: Copyright (c) 2020-2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################

import sys

sys.path.append('../')
import gi
import configparser

gi.require_version('Gst', '1.0')
from gi.repository import GLib, Gst
from ctypes import *
import time
import sys
import math
import platform
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
from common.FPS import PERF_DATA
import numpy as np
import pyds
import cv2
import os
import os.path
from os import path

perf_data = None
frame_count = {}
saved_count = {}
global PGIE_CLASS_ID_VEHICLE
PGIE_CLASS_ID_VEHICLE = 0
global PGIE_CLASS_ID_PERSON
PGIE_CLASS_ID_PERSON = 2

MAX_DISPLAY_LEN = 64
PGIE_CLASS_ID_VEHICLE = 0
PGIE_CLASS_ID_BICYCLE = 1
PGIE_CLASS_ID_PERSON = 2
PGIE_CLASS_ID_ROADSIGN = 3
MUXER_OUTPUT_WIDTH = 1920
MUXER_OUTPUT_HEIGHT = 1080
MUXER_BATCH_TIMEOUT_USEC = 4000000
TILED_OUTPUT_WIDTH = 1920
TILED_OUTPUT_HEIGHT = 1080
GST_CAPS_FEATURES_NVMM = "memory:NVMM"
pgie_classes_str = ["Vehicle", "TwoWheeler", "Person", "RoadSign"]

MIN_CONFIDENCE = 0.3
MAX_CONFIDENCE = 0.4


# tiler_sink_pad_buffer_probe  will extract metadata received on tiler src pad
# and update params for drawing rectangle, object information etc.
def tiler_sink_pad_buffer_probe(pad, info, u_data):
    frame_number = 0
    num_rects = 0
    gst_buffer = info.get_buffer()
    if not gst_buffer:
        print("Unable to get GstBuffer ")
        return

    # Retrieve batch metadata from the gst_buffer
    # Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
    # C address of gst_buffer as input, which is obtained with hash(gst_buffer)
    batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))

    l_frame = batch_meta.frame_meta_list
    while l_frame is not None:
        try:
            # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
            # The casting is done by pyds.NvDsFrameMeta.cast()
            # The casting also keeps ownership of the underlying memory
            # in the C code, so the Python garbage collector will leave
            # it alone.
            frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
        except StopIteration:
            break

        frame_number = frame_meta.frame_num
        l_obj = frame_meta.obj_meta_list
        num_rects = frame_meta.num_obj_meta
        is_first_obj = True
        save_image = False
        obj_counter = {
            PGIE_CLASS_ID_VEHICLE: 0,
            PGIE_CLASS_ID_PERSON: 0,
            PGIE_CLASS_ID_BICYCLE: 0,
            PGIE_CLASS_ID_ROADSIGN: 0
        }
        while l_obj is not None:
            try:
                # Casting l_obj.data to pyds.NvDsObjectMeta
                obj_meta = pyds.NvDsObjectMeta.cast(l_obj.data)
            except StopIteration:
                break
            obj_counter[obj_meta.class_id] += 1
            # Periodically check for objects with borderline confidence value that may be false positive detections.
            # If such detections are found, annotate the frame with bboxes and confidence value.
            # Save the annotated frame to file.
            if saved_count["stream_{}".format(frame_meta.pad_index)] % 30 == 0 and (
                    MIN_CONFIDENCE < obj_meta.confidence < MAX_CONFIDENCE):
                if is_first_obj:
                    is_first_obj = False
                    # Getting Image data using nvbufsurface
                    # the input should be address of buffer and batch_id
                    n_frame = pyds.get_nvds_buf_surface(hash(gst_buffer), frame_meta.batch_id)
                    n_frame = draw_bounding_boxes(n_frame, obj_meta, obj_meta.confidence)
                    # convert python array into numpy array format in the copy mode.
                    frame_copy = np.array(n_frame, copy=True, order='C')
                    # convert the array into cv2 default color format
                    frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_RGBA2BGRA)


                save_image = True

            try:
                l_obj = l_obj.next
            except StopIteration:
                break

        print("Frame Number=", frame_number, "Number of Objects=", num_rects, "Vehicle_count=",
              obj_counter[PGIE_CLASS_ID_VEHICLE], "Person_count=", obj_counter[PGIE_CLASS_ID_PERSON])
        # update frame rate through this probe
        stream_index = "stream{0}".format(frame_meta.pad_index)
        global perf_data
        perf_data.update_fps(stream_index)
        if save_image:
            img_path = "{}/stream_{}/frame_{}.jpg".format(folder_name, frame_meta.pad_index, frame_number)
            cv2.imwrite(img_path, frame_copy)
        saved_count["stream_{}".format(frame_meta.pad_index)] += 1
        try:
            l_frame = l_frame.next
        except StopIteration:
            break

    return Gst.PadProbeReturn.OK


def draw_bounding_boxes(image, obj_meta, confidence):
    confidence = '{0:.2f}'.format(confidence)
    rect_params = obj_meta.rect_params
    top = int(rect_params.top)
    left = int(rect_params.left)
    width = int(rect_params.width)
    height = int(rect_params.height)
    obj_name = pgie_classes_str[obj_meta.class_id]
    # image = cv2.rectangle(image, (left, top), (left + width, top + height), (0, 0, 255, 0), 2, cv2.LINE_4)
    color = (0, 0, 255, 0)
    w_percents = int(width * 0.05) if width > 100 else int(width * 0.1)
    h_percents = int(height * 0.05) if height > 100 else int(height * 0.1)
    linetop_c1 = (left + w_percents, top)
    linetop_c2 = (left + width - w_percents, top)
    image = cv2.line(image, linetop_c1, linetop_c2, color, 6)
    linebot_c1 = (left + w_percents, top + height)
    linebot_c2 = (left + width - w_percents, top + height)
    image = cv2.line(image, linebot_c1, linebot_c2, color, 6)
    lineleft_c1 = (left, top + h_percents)
    lineleft_c2 = (left, top + height - h_percents)
    image = cv2.line(image, lineleft_c1, lineleft_c2, color, 6)
    lineright_c1 = (left + width, top + h_percents)
    lineright_c2 = (left + width, top + height - h_percents)
    image = cv2.line(image, lineright_c1, lineright_c2, color, 6)
    # Note that on some systems cv2.putText erroneously draws horizontal lines across the image
    image = cv2.putText(image, obj_name + ',C=' + str(confidence), (left - 10, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (0, 0, 255, 0), 2)
    return image


def cb_newpad(decodebin, decoder_src_pad, data):
    print("In cb_newpad\n")
    caps = decoder_src_pad.get_current_caps()
    gststruct = caps.get_structure(0)
    gstname = gststruct.get_name()
    source_bin = data
    features = caps.get_features(0)

    # Need to check if the pad created by the decodebin is for video and not
    # audio.
    if (gstname.find("video") != -1):
        # Link the decodebin pad only if decodebin has picked nvidia
        # decoder plugin nvdec_*. We do this by checking if the pad caps contain
        # NVMM memory features.
        if features.contains("memory:NVMM"):
            # Get the source bin ghost pad
            bin_ghost_pad = source_bin.get_static_pad("src")
            if not bin_ghost_pad.set_target(decoder_src_pad):
                sys.stderr.write("Failed to link decoder src pad to source bin ghost pad\n")
        else:
            sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n")


def decodebin_child_added(child_proxy, Object, name, user_data):
    print("Decodebin child added:", name, "\n")
    if name.find("decodebin") != -1:
        Object.connect("child-added", decodebin_child_added, user_data)

    if "source" in name:
        source_element = child_proxy.get_by_name("source")
        if source_element.find_property('drop-on-latency') != None:
            Object.set_property("drop-on-latency", True)

def create_source_bin(index, uri):
    print("Creating source bin")

    # Create a source GstBin to abstract this bin's content from the rest of the
    # pipeline
    bin_name = "source-bin-%02d" % index
    print(bin_name)
    nbin = Gst.Bin.new(bin_name)
    if not nbin:
        sys.stderr.write(" Unable to create source bin \n")

    # Source element for reading from the uri.
    # We will use decodebin and let it figure out the container format of the
    # stream and the codec and plug the appropriate demux and decode plugins.
    uri_decode_bin = Gst.ElementFactory.make("uridecodebin", "uri-decode-bin")
    if not uri_decode_bin:
        sys.stderr.write(" Unable to create uri decode bin \n")
    # We set the input uri to the source element
    uri_decode_bin.set_property("uri", uri)
    # Connect to the "pad-added" signal of the decodebin which generates a
    # callback once a new pad for raw data has beed created by the decodebin
    uri_decode_bin.connect("pad-added", cb_newpad, nbin)
    uri_decode_bin.connect("child-added", decodebin_child_added, nbin)

    # We need to create a ghost pad for the source bin which will act as a proxy
    # for the video decoder src pad. The ghost pad will not have a target right
    # now. Once the decode bin creates the video decoder and generates the
    # cb_newpad callback, we will set the ghost pad target to the video decoder
    # src pad.
    Gst.Bin.add(nbin, uri_decode_bin)
    bin_pad = nbin.add_pad(Gst.GhostPad.new_no_target("src", Gst.PadDirection.SRC))
    if not bin_pad:
        sys.stderr.write(" Failed to add ghost pad in source bin \n")
        return None
    return nbin

def main(args):
    # Check input arguments
    if len(args) < 2:
        sys.stderr.write("usage: %s <uri1> [uri2] ... [uriN] <folder to save frames>\n" % args[0])
        sys.exit(1)

    global perf_data
    perf_data = PERF_DATA(len(args) - 2)
    number_sources = len(args) - 2

    global folder_name
    folder_name = args[-1]
    if path.exists(folder_name):
        sys.stderr.write("The output folder %s already exists. Please remove it first.\n" % folder_name)
        sys.exit(1)

    os.mkdir(folder_name)
    print("Frames will be saved in ", folder_name)
    # Standard GStreamer initialization
    Gst.init(None)

    # Create gstreamer elements */
    # Create Pipeline element that will form a connection of other elements
    print("Creating Pipeline \n ")
    pipeline = Gst.Pipeline()
    is_live = False

    if not pipeline:
        sys.stderr.write(" Unable to create Pipeline \n")
    print("Creating streamux \n ")

    # Create nvstreammux instance to form batches from one or more sources.
    streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
    if not streammux:
        sys.stderr.write(" Unable to create NvStreamMux \n")

    pipeline.add(streammux)
    for i in range(number_sources):
        os.mkdir(folder_name + "/stream_" + str(i))
        frame_count["stream_" + str(i)] = 0
        saved_count["stream_" + str(i)] = 0
        print("Creating source_bin ", i, " \n ")
        uri_name = args[i + 1]
        if uri_name.find("rtsp://") == 0:
            is_live = True
        source_bin = create_source_bin(i, uri_name)
        if not source_bin:
            sys.stderr.write("Unable to create source bin \n")
        pipeline.add(source_bin)
        padname = "sink_%u" % i
        sinkpad = streammux.get_request_pad(padname)
        if not sinkpad:
            sys.stderr.write("Unable to create sink pad bin \n")
        srcpad = source_bin.get_static_pad("src")
        if not srcpad:
            sys.stderr.write("Unable to create src pad bin \n")
        srcpad.link(sinkpad)
    print("Creating Pgie \n ")
    pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
    if not pgie:
        sys.stderr.write(" Unable to create pgie \n")
    # Add nvvidconv1 and filter1 to convert the frames to RGBA
    # which is easier to work with in Python.
    print("Creating nvvidconv1 \n ")
    nvvidconv1 = Gst.ElementFactory.make("nvvideoconvert", "convertor1")
    if not nvvidconv1:
        sys.stderr.write(" Unable to create nvvidconv1 \n")
    print("Creating filter1 \n ")
    caps1 = Gst.Caps.from_string("video/x-raw(memory:NVMM), format=RGBA")
    filter1 = Gst.ElementFactory.make("capsfilter", "filter1")
    if not filter1:
        sys.stderr.write(" Unable to get the caps filter1 \n")
    filter1.set_property("caps", caps1)
    print("Creating tiler \n ")
    tiler = Gst.ElementFactory.make("nvmultistreamtiler", "nvtiler")
    if not tiler:
        sys.stderr.write(" Unable to create tiler \n")
    print("Creating nvvidconv \n ")
    nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
    if not nvvidconv:
        sys.stderr.write(" Unable to create nvvidconv \n")
    print("Creating nvosd \n ")
    nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
    if not nvosd:
        sys.stderr.write(" Unable to create nvosd \n")
    if (is_aarch64()):
        print("Creating transform \n ")
        transform = Gst.ElementFactory.make("nvegltransform", "nvegl-transform")
        if not transform:
            sys.stderr.write(" Unable to create transform \n")

    print("Creating EGLSink \n")
    sink = Gst.ElementFactory.make("nveglglessink", "nvvideo-renderer")
    if not sink:
        sys.stderr.write(" Unable to create egl sink \n")

    if is_live:
        print("Atleast one of the sources is live")
        streammux.set_property('live-source', 1)

    streammux.set_property('width', 1920)
    streammux.set_property('height', 1080)
    streammux.set_property('batch-size', number_sources)
    streammux.set_property('batched-push-timeout', 4000000)
    pgie.set_property('config-file-path', "dstest_imagedata_config.txt")
    pgie_batch_size = pgie.get_property("batch-size")
    if (pgie_batch_size != number_sources):
        print("WARNING: Overriding infer-config batch-size", pgie_batch_size, " with number of sources ",
              number_sources, " \n")
        pgie.set_property("batch-size", number_sources)
    tiler_rows = int(math.sqrt(number_sources))
    tiler_columns = int(math.ceil((1.0 * number_sources) / tiler_rows))
    tiler.set_property("rows", tiler_rows)
    tiler.set_property("columns", tiler_columns)
    tiler.set_property("width", TILED_OUTPUT_WIDTH)
    tiler.set_property("height", TILED_OUTPUT_HEIGHT)

    sink.set_property("sync", 0)
    sink.set_property("qos", 0)

    if not is_aarch64():
        # Use CUDA unified memory in the pipeline so frames
        # can be easily accessed on CPU in Python.
        mem_type = int(pyds.NVBUF_MEM_CUDA_UNIFIED)
        streammux.set_property("nvbuf-memory-type", mem_type)
        nvvidconv.set_property("nvbuf-memory-type", mem_type)
        nvvidconv1.set_property("nvbuf-memory-type", mem_type)
        tiler.set_property("nvbuf-memory-type", mem_type)

    print("Adding elements to Pipeline \n")
    pipeline.add(pgie)
    pipeline.add(tiler)
    pipeline.add(nvvidconv)
    pipeline.add(filter1)
    pipeline.add(nvvidconv1)
    pipeline.add(nvosd)
    if is_aarch64():
        pipeline.add(transform)
    pipeline.add(sink)

    print("Linking elements in the Pipeline \n")
    streammux.link(pgie)
    pgie.link(nvvidconv1)
    nvvidconv1.link(filter1)
    filter1.link(tiler)
    tiler.link(nvvidconv)
    nvvidconv.link(nvosd)
    if is_aarch64():
        nvosd.link(transform)
        transform.link(sink)
    else:
        nvosd.link(sink)

    # create an event loop and feed gstreamer bus mesages to it
    loop = GLib.MainLoop()
    bus = pipeline.get_bus()
    bus.add_signal_watch()
    bus.connect("message", bus_call, loop)

    tiler_sink_pad = tiler.get_static_pad("sink")
    if not tiler_sink_pad:
        sys.stderr.write(" Unable to get src pad \n")
    else:
        tiler_sink_pad.add_probe(Gst.PadProbeType.BUFFER, tiler_sink_pad_buffer_probe, 0)
        # perf callback function to print fps every 5 sec
        GLib.timeout_add(5000, perf_data.perf_print_callback)

    # List the sources
    print("Now playing...")
    for i, source in enumerate(args[:-1]):
        if i != 0:
            print(i, ": ", source)

    print("Starting pipeline \n")
    # start play back and listed to events		
    pipeline.set_state(Gst.State.PLAYING)
    try:
        loop.run()
    except:
        pass
    # cleanup
    print("Exiting app\n")
    pipeline.set_state(Gst.State.NULL)


if __name__ == '__main__':
    sys.exit(main(sys.argv))

Please help me out.

Thanks

Could you try to set compute-hw=1 paras to the nvvideoconvert plugin and see if it works? Thanks

Hi @yuweiw,

I tried with nvvidconv.set_property(“compute-hw”, 1) but issue is still same.
What else I can try?

Thanks.

Could you add GST_DEBUG=3 to open more log when you run our demo app?Like GST_DEBUG=3 ./deepstream-imagedata-multi-stream .............

Hi @yuweiw

I have run the sample with sudo GST_DEBUG=3 python3 deepstream_imagedata-multistream.py “http://admin:admin123@192.168.0.200:80/cgi-bin/mjpg/video.cgi?channel=1&subtype=1” ./frames but unable to understand the logs.

can you please suggest what should I add in sample application.

Error

Decodebin child added: decodebin0 

Decodebin child added: queue2-0 

Decodebin child added: multipartdemux0 

Decodebin child added: multiqueue0 

Decodebin child added: nvjpegdec0 

0:00:05.652839592 1379526 0xfffef800ecc0 FIXME           videodecoder gstvideodecoder.c:946:gst_video_decoder_drain_out:<nvjpegdec0> Sub-class should implement drain()
0:00:05.653381189 1379526 0xfffee004e060 FIXME           videodecoder gstvideodecoder.c:946:gst_video_decoder_drain_out:<nvjpegdec0> Sub-class should implement drain()
In cb_newpad

0:00:10.266040288 1379526 0xfffee004e060 WARN                GST_PADS gstpad.c:4231:gst_pad_peer_query:<decodebin0:src_0> could not send sticky events
0:00:10.266771100 1379526 0xfffee004e060 WARN                GST_PADS gstpad.c:4231:gst_pad_peer_query:<decodebin0:src_0> could not send sticky events
0:00:10.339759402 1379526     0x4743d460 WARN                 basesrc gstbasesrc.c:3072:gst_base_src_loop:<source> error: Internal data stream error.
0:00:10.339868233 1379526     0x4743d460 WARN                 basesrc gstbasesrc.c:3072:gst_base_src_loop:<source> error: streaming stopped, reason not-negotiated (-4)
Error: gst-stream-error-quark: Internal data stream error. (1): gstbasesrc.c(3072): gst_base_src_loop (): /GstPipeline:pipeline0/GstBin:source-bin-00/GstURIDecodeBin:uri-decode-bin/GstSoupHTTPSrc:source:
streaming stopped, reason not-negotiated (-4)
Exiting app

Thanks.

1.Could you help to generate the pipeline graph of the 2 platforms(2080Ti & Nx-Xavier)? You can refer the link below:
https://forums.developer.nvidia.com/t/deepstream-sdk-faq/80236/10

2.It’s weird that it uess a nvjpegdec0 decoder plugin. Could you tole us how the source is generated? Or you can provide us a source directly.

Hi @yuweiw

  1. I have generated the graph for 2080TI and NxXavier both for deepstream-imagedata-multistream sample application with http stream. Please have a look. I am unable to find any difference except memory type and nvegl-transform. I removed nvegl-transform from pipeline and again run but issue was same on NxXavier.

2080TI Graph

NxXavier Graph

  1. Actually It is local stream, I will unable to share the rtsp directly.

The nvegl-transform plugin is necessary when use the Xavier to render. This issue seems to be related to your stream. I noticed that you are using your own server. How does your stream generated? If you can’t provide us with the stream, you can debug it step by step byyourself.

1.add some log to the source code
2.replace the plugins to fakesink one by one from back to front to narrow down the scope
3. You can try to set the memory type by referring the link below:
[https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvvideoconvert.html](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvvideoconvert.html) 

Okay will try it.

Thanks.

But I just want to know that, if the issue is related with the stream then Why it is working on dGPU(2080TI)?

This is really weird. Maybe the decoding of your stream needs some special process. You also can try some local stream to reproduce this problem. Cause we have no the stream, we are looking forward to your analysis

Hi @yuweiw

We are facing this issue on our production machine. Can you help me to resolve this? I can share the machine ssh details and can give your deepstream-image-datamultistream application path location.

meanwhile I have also made our local http stream publicly available and it is working on 2080TI with the imagedata-multistream sample.

Please suggest.

Thanks.

OK, We’ll analyze this problem as soon as possible. Also, if you don’t want to make the streaming address public in the future, you can only just message me the uri.

Hi @yuweiw

I have message you the uri and if you need the machine details then I will share machine ssh details too to analyse the sample application on NX with http stream.
I am removing the uri from this thread.

Thanks.

There is no update from you for a period, assuming this is not an issue anymore.
Hence we are closing this topic. If need further support, please open a new one.
Thanks

Hi @Pritam ,The service link you provided is not very stable and the connection is often broken.
Could you use the cli first to find a pipeline that can be used? Like

gst-launch-1.0 souphttpsrc location="***"  ! 'image/jpeg,width=1920,height=1080,framerate=30/1' ! jpegparse ! nvjpegdec !  nvvideoconvert ! nvegltransform ! nveglglessink

Then, you can modify the source code to use the pipeline that can be used.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.