Sample object detector tracker YOLOV3 model error inference

Please provide the following info (check/uncheck the boxes after creating this topic):
Software Version
DRIVE OS Linux 5.2.6
DRIVE OS Linux 5.2.6 and DriveWorks 4.0
DRIVE OS Linux 5.2.0
[*] DRIVE OS Linux 5.2.0 and DriveWorks 3.5
NVIDIA DRIVE™ Software 10.0 (Linux)
NVIDIA DRIVE™ Software 9.0 (Linux)
other DRIVE OS version
other

Target Operating System
[*] Linux
QNX
other

Hardware Platform
NVIDIA DRIVE™ AGX Xavier DevKit (E3550)
[*] NVIDIA DRIVE™ AGX Pegasus DevKit (E3550)
other

SDK Manager Version
[*] 1.8.0.10363
other

Host Machine Version
[*] native Ubuntu 18.04
other

Followed this post Yolov3 Implementation error in inference to convert to yolov3.bin and use it for inference in the sample.
Facing the below issue:

bin$ ./sample_object_detector_tracker --input-type=video --video=/media/nvidia/1574c8ec-78a4-40b8-b4d8-882cc419c2a0/dl-workspace/buildCrossCompile/_data/samples/sfm/triangulation/video_0.h264
[27-06-2022 16:56:30] Platform: Detected DDPX - Tegra B
[27-06-2022 16:56:30] TimeSource: monotonic epoch time offset is 1656309134410035
[27-06-2022 16:56:30] TimeSource: Could not detect valid PTP time source at nvpps. Fallback to eth0
[27-06-2022 16:56:30] TimeSource Eth: Lost PTP time synchronizaton. Synchronized time will not be available from this timesource.
[27-06-2022 16:56:30] TimeSource: Could not detect valid PTP time source at 'eth0'. Fallback to CLOCK_MONOTONIC.
[27-06-2022 16:56:30] Platform: number of GPU devices detected 2
[27-06-2022 16:56:30] Platform: currently selected GPU device discrete ID 0
[27-06-2022 16:56:30] Context::getDataPathFromSelfLocation DATA_ROOT found at: /usr/local/driveworks-3.5/data
[27-06-2022 16:56:30] SDK: No resources(.pak) mounted, some modules will not function properly
[27-06-2022 16:56:30] SDK: Create NvMediaDevice
[27-06-2022 16:56:30] SDK: Create NvMedia2D
[27-06-2022 16:56:30] SDK: use EGL display as provided
[27-06-2022 16:56:30] TimeSource: monotonic epoch time offset is 1656309134410035
[27-06-2022 16:56:30] TimeSource: Could not detect valid PTP time source at nvpps. Fallback to eth0
[27-06-2022 16:56:30] TimeSource Eth: Lost PTP time synchronizaton. Synchronized time will not be available from this timesource.
[27-06-2022 16:56:30] TimeSource: Could not detect valid PTP time source at 'eth0'. Fallback to CLOCK_MONOTONIC.
[27-06-2022 16:56:30] Initialize DriveWorks SDK v3.5.75
[27-06-2022 16:56:30] Release build with GNU 7.3.1 from heads/buildbrain-branch-0-gc61a9a35bd0 against Drive PDK v5.2.0.0
[27-06-2022 16:56:30] Initialize DriveWorks VisualizationSDK v3.5.75
[27-06-2022 16:56:30] Initialize DriveWorksGL SDK v3.5.75
[27-06-2022 16:56:30] SensorFactory::createSensor() -> camera.virtual, camera-group=a,camera-index=0,camera-type=ar0231-rccb-bae-sf3324,input-type=video,offscreen=0,profiling=1,slave=0,tensorRT_model=,video=/media/nvidia/1574c8ec-78a4-40b8-b4d8-882cc419c2a0/dl-workspace/buildCrossCompile/_data/samples/sfm/triangulation/video_0.h264
[27-06-2022 16:56:30] CameraVirtual: defaulting to non SIPL
[27-06-2022 16:56:30] CameraBase: pool size set to 8
[27-06-2022 16:56:30] CameraVirtualNvMedia: no seek table found at /media/nvidia/1574c8ec-78a4-40b8-b4d8-882cc419c2a0/dl-workspace/buildCrossCompile/_data/samples/sfm/triangulation/video_0.h264.seek, seeking is not available.
SimpleCamera: Camera image: 1280x800
Camera image with 1280x800 at 30 FPS
[27-06-2022 16:56:30] StreamConsumerGL: successfully initialized
[27-06-2022 16:56:30] StreamProducerCUDA: successfully initialized
[27-06-2022 16:56:33] INVALID_CONFIG: Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors.
[27-06-2022 16:56:33] INVALID_CONFIG: Deserialize the cuda engine failed.
[27-06-2022 16:56:34] Driveworks exception thrown: DW_INTERNAL_ERROR: DNN: Unable to load model.

terminate called after throwing an instance of 'std::runtime_error'
  what():  [2022-06-27 16:56:34] DW Error DW_INTERNAL_ERROR executing DW function:
 dwDNN_initializeTensorRTFromFile(&m_dnn, tensorRTModel.c_str(), nullptr, DW_PROCESSOR_TYPE_GPU, m_sdk)
 at /usr/local/driveworks-3.5/samples/src/dnn/sample_object_detector_tracker/main.cpp:268
Aborted (core dumped)
bin$ 

Error stacktrace:

//------------------------------------------------------------------------------
// initialize DNN
//------------------------------------------------------------------------------
{
    // If not specified, load the correct network based on platform
    std::string tensorRTModel = getArgument("tensorRT_model");
    if (tensorRTModel.empty())
    {
        tensorRTModel = dw_samples::DataPath::get() + "/samples/detector/";
        tensorRTModel += getPlatformPrefix();
        tensorRTModel += "/yolov3.bin";
    }
    std::cout << "Model path: " << tensorRTModel;
    // Initialize DNN from a TensorRT file
    CHECK_DW_ERROR(dwDNN_initializeTensorRTFromFile(&m_dnn, tensorRTModel.c_str(), nullptr,
                                                    DW_PROCESSOR_TYPE_GPU, m_sdk));

Main function:


ProgramArguments::Option_t("video", (dw_samples::DataPath::get() + "/samples/sfm/triangulation/video_0.h264").c_str(), "path to video"),
ProgramArguments::Option_t("tensorRT_model", "", (std::string("path to TensorRT model file. By default: ") + dw_samples::DataPath::get() + "/samples/detector/yolov3.bin").c_str())},
"Object Tracker sample which detects and tracks cars.");

Please help in resolving the issue.

Dear @raji,
Could you share the tensorRT_optimization log when preparing model. Also, please double check if the same model is loaded? As per error, it seems you are loading another model. Does your machine has two GPUs?

My HOST system has only one GPU.

After generating the cross-compiled install executable, I’m transferring build folder to Pegasus and using the yolov3.bin.
In code I’ve already specified which model to pick. Do I need to mention it during sample runtime too?

tensorRT optimization log:

$ /usr/local/driveworks-3.5/tools/dnn/tensorRT_optimization --modelType=onnx --onnxFile=/home/lidar/Documents/Nvidia_Drive/buildCrossCompile/yolov3.onnx --out=/home/lidar/Documents/Nvidia_Drive/buildCrossCompile/yolov3.bin


--------------------------------------------------------------
WARNING: Using default Logger, most probably DriveWorks
         library was linked more than once.
--------------------------------------------------------------


DefaultLogger: [27-06-2022 16:22:25] DefaultLogger: WARNING: ExplicitBatch is enabled by default for ONNX models.
Initializing TensorRT generation on model /home/lidar/Documents/Nvidia_Drive/buildCrossCompile/yolov3.onnx.
----------------------------------------------------------------
Input filename:   /home/lidar/Documents/Nvidia_Drive/buildCrossCompile/yolov3.onnx
ONNX IR version:  0.0.8
Opset version:    15
Producer name:    NVIDIA TensorRT sample
Producer version: 
Domain:           
Model version:    0
Doc string:       
----------------------------------------------------------------
Input "000_net": 1x3x608x608
Output "082_convolutional": 1x255x19x19
Output "094_convolutional": 1x255x38x38
Output "106_convolutional": 1x255x76x76
Building Engine...
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 0: 58.8356 ms.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 1: 44.5033 ms.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 2: 48.4751 ms.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 3: 46.9769 ms.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 4: 47.3496 ms.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 5: 47.5444 ms.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 6: 47.9423 ms.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 7: 47.6099 ms.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 8: 47.8791 ms.
Explicit batch network detected and batch size specified, use enqueue without batch size instead.
Iteration 9: 48.5833 ms.
CUDA graph OFF, Average over 10 runs is 48.5699 ms.

Dear @raji,
If you want to run the executable on target, make sure you run the tensorRT_optimization tool on target to generate model. Make sure to choose correct cudaDevice value(DriveWorks SDK Reference: TensorRT Optimizer Tool). On Pegasus, by default, it uses dGPU whose index ID is 0

@SivaRamaKrishnaNV ,

How to generate yolov3 network json?
Now I’m facing the below error:

Driveworks exception thrown: DW_INVALID_ARGUMENT: blobName not found

terminate called after throwing an instance of 'std::runtime_error'
  what():  [2022-06-27 17:54:54] DW Error DW_INVALID_ARGUMENT executing DW function:
 dwDNN_getOutputIndex(&m_cvgIdx, coverageBlobName, m_dnn)
 at /usr/local/driveworks-3.5/samples/src/dnn/sample_object_detector_tracker/main.cpp:289

Log:

bin$ ./sample_object_detector_tracker --input-type=video --video=/media/nvidia/1574c8ec-78a4-40b8-b4d8-882cc419c2a0/dl-workspace/buildCrossCompile/_data/samples/sfm/triangulation/video_0.h264 --tensorRT_model=/media/nvidia/1574c8ec-78a4-40b8-b4d8-882cc419c2a0/dl-workspace/buildCrossCompile/_data/samples/detector/yolov3.bin
[27-06-2022 17:54:46] Platform: Detected DDPX - Tegra B
[27-06-2022 17:54:46] TimeSource: monotonic epoch time offset is 1656331688718902
[27-06-2022 17:54:46] TimeSource: Could not detect valid PTP time source at nvpps. Fallback to eth0
[27-06-2022 17:54:46] TimeSource Eth: Lost PTP time synchronizaton. Synchronized time will not be available from this timesource.
[27-06-2022 17:54:46] TimeSource: Could not detect valid PTP time source at 'eth0'. Fallback to CLOCK_MONOTONIC.
[27-06-2022 17:54:46] Platform: number of GPU devices detected 2
[27-06-2022 17:54:46] Platform: currently selected GPU device discrete ID 0
[27-06-2022 17:54:46] Context::getDataPathFromSelfLocation DATA_ROOT found at: /usr/local/driveworks-3.5/data
[27-06-2022 17:54:46] SDK: No resources(.pak) mounted, some modules will not function properly
[27-06-2022 17:54:46] SDK: Create NvMediaDevice
[27-06-2022 17:54:46] SDK: Create NvMedia2D
[27-06-2022 17:54:46] SDK: use EGL display as provided
[27-06-2022 17:54:46] TimeSource: monotonic epoch time offset is 1656331688718902
[27-06-2022 17:54:46] TimeSource: Could not detect valid PTP time source at nvpps. Fallback to eth0
[27-06-2022 17:54:46] TimeSource Eth: Lost PTP time synchronizaton. Synchronized time will not be available from this timesource.
[27-06-2022 17:54:46] TimeSource: Could not detect valid PTP time source at 'eth0'. Fallback to CLOCK_MONOTONIC.
[27-06-2022 17:54:46] Initialize DriveWorks SDK v3.5.75
[27-06-2022 17:54:46] Release build with GNU 7.3.1 from heads/buildbrain-branch-0-gc61a9a35bd0 against Drive PDK v5.2.0.0
[27-06-2022 17:54:46] Initialize DriveWorks VisualizationSDK v3.5.75
[27-06-2022 17:54:46] Initialize DriveWorksGL SDK v3.5.75
[27-06-2022 17:54:46] SensorFactory::createSensor() -> camera.virtual, camera-group=a,camera-index=0,camera-type=ar0231-rccb-bae-sf3324,input-type=video,offscreen=0,profiling=1,slave=0,tensorRT_model=/media/nvidia/1574c8ec-78a4-40b8-b4d8-882cc419c2a0/dl-workspace/buildCrossCompile/_data/samples/detector/yolov3.bin,video=/media/nvidia/1574c8ec-78a4-40b8-b4d8-882cc419c2a0/dl-workspace/buildCrossCompile/_data/samples/sfm/triangulation/video_0.h264
[27-06-2022 17:54:46] CameraVirtual: defaulting to non SIPL
[27-06-2022 17:54:46] CameraBase: pool size set to 8
[27-06-2022 17:54:46] CameraVirtualNvMedia: no seek table found at /media/nvidia/1574c8ec-78a4-40b8-b4d8-882cc419c2a0/dl-workspace/buildCrossCompile/_data/samples/sfm/triangulation/video_0.h264.seek, seeking is not available.
SimpleCamera: Camera image: 1280x800
Camera image with 1280x800 at 30 FPS
[27-06-2022 17:54:46] StreamConsumerGL: successfully initialized
[27-06-2022 17:54:46] StreamProducerCUDA: successfully initialized
Model path: /media/nvidia/1574c8ec-78a4-40b8-b4d8-882cc419c2a0/dl-workspace/buildCrossCompile/_data/samples/detector/yolov3.bin[27-06-2022 17:54:54] Deserialize required 4844016 microseconds.
[27-06-2022 17:54:54] DNN: Metadata json file could not be found. Metadata has been filled with default values. Please place <network_filename>.json in the same directory as the network file if custom metadata is needed.
[27-06-2022 17:54:54] Driveworks exception thrown: DW_INVALID_ARGUMENT: blobName not found

terminate called after throwing an instance of 'std::runtime_error'
  what():  [2022-06-27 17:54:54] DW Error DW_INVALID_ARGUMENT executing DW function:
 dwDNN_getOutputIndex(&m_cvgIdx, coverageBlobName, m_dnn)
 at /usr/local/driveworks-3.5/samples/src/dnn/sample_object_detector_tracker/main.cpp:289
Aborted (core dumped)

Is this output from Onnx required as Metadata json file?

{
  %001_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%000_net, %001_convolutional_conv_weights)
  %001_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%001_convolutional, %001_convolutional_bn_scale, %001_convolutional_bn_bias, %001_convolutional_bn_mean, %001_convolutional_bn_var)
  %001_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%001_convolutional_bn)
  %002_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [2, 2]](%001_convolutional_lrelu, %002_convolutional_conv_weights)
  %002_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%002_convolutional, %002_convolutional_bn_scale, %002_convolutional_bn_bias, %002_convolutional_bn_mean, %002_convolutional_bn_var)
  %002_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%002_convolutional_bn)
  %003_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%002_convolutional_lrelu, %003_convolutional_conv_weights)
  %003_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%003_convolutional, %003_convolutional_bn_scale, %003_convolutional_bn_bias, %003_convolutional_bn_mean, %003_convolutional_bn_var)
  %003_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%003_convolutional_bn)
  %004_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%003_convolutional_lrelu, %004_convolutional_conv_weights)
  %004_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%004_convolutional, %004_convolutional_bn_scale, %004_convolutional_bn_bias, %004_convolutional_bn_mean, %004_convolutional_bn_var)
  %004_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%004_convolutional_bn)
  %005_shortcut = Add(%004_convolutional_lrelu, %002_convolutional_lrelu)
  %006_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [2, 2]](%005_shortcut, %006_convolutional_conv_weights)
  %006_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%006_convolutional, %006_convolutional_bn_scale, %006_convolutional_bn_bias, %006_convolutional_bn_mean, %006_convolutional_bn_var)
  %006_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%006_convolutional_bn)
  %007_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%006_convolutional_lrelu, %007_convolutional_conv_weights)
  %007_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%007_convolutional, %007_convolutional_bn_scale, %007_convolutional_bn_bias, %007_convolutional_bn_mean, %007_convolutional_bn_var)
  %007_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%007_convolutional_bn)
  %008_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%007_convolutional_lrelu, %008_convolutional_conv_weights)
  %008_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%008_convolutional, %008_convolutional_bn_scale, %008_convolutional_bn_bias, %008_convolutional_bn_mean, %008_convolutional_bn_var)
  %008_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%008_convolutional_bn)
  %009_shortcut = Add(%008_convolutional_lrelu, %006_convolutional_lrelu)
  %010_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%009_shortcut, %010_convolutional_conv_weights)
  %010_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%010_convolutional, %010_convolutional_bn_scale, %010_convolutional_bn_bias, %010_convolutional_bn_mean, %010_convolutional_bn_var)
  %010_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%010_convolutional_bn)
  %011_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%010_convolutional_lrelu, %011_convolutional_conv_weights)
  %011_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%011_convolutional, %011_convolutional_bn_scale, %011_convolutional_bn_bias, %011_convolutional_bn_mean, %011_convolutional_bn_var)
  %011_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%011_convolutional_bn)
  %012_shortcut = Add(%011_convolutional_lrelu, %009_shortcut)
  %013_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [2, 2]](%012_shortcut, %013_convolutional_conv_weights)
  %013_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%013_convolutional, %013_convolutional_bn_scale, %013_convolutional_bn_bias, %013_convolutional_bn_mean, %013_convolutional_bn_var)
  %013_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%013_convolutional_bn)
  %014_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%013_convolutional_lrelu, %014_convolutional_conv_weights)
  %014_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%014_convolutional, %014_convolutional_bn_scale, %014_convolutional_bn_bias, %014_convolutional_bn_mean, %014_convolutional_bn_var)
  %014_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%014_convolutional_bn)
  %015_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%014_convolutional_lrelu, %015_convolutional_conv_weights)
  %015_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%015_convolutional, %015_convolutional_bn_scale, %015_convolutional_bn_bias, %015_convolutional_bn_mean, %015_convolutional_bn_var)
  %015_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%015_convolutional_bn)
  %016_shortcut = Add(%015_convolutional_lrelu, %013_convolutional_lrelu)
  %017_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%016_shortcut, %017_convolutional_conv_weights)
  %017_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%017_convolutional, %017_convolutional_bn_scale, %017_convolutional_bn_bias, %017_convolutional_bn_mean, %017_convolutional_bn_var)
  %017_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%017_convolutional_bn)
  %018_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%017_convolutional_lrelu, %018_convolutional_conv_weights)
  %018_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%018_convolutional, %018_convolutional_bn_scale, %018_convolutional_bn_bias, %018_convolutional_bn_mean, %018_convolutional_bn_var)
  %018_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%018_convolutional_bn)
  %019_shortcut = Add(%018_convolutional_lrelu, %016_shortcut)
  %020_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%019_shortcut, %020_convolutional_conv_weights)
  %020_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%020_convolutional, %020_convolutional_bn_scale, %020_convolutional_bn_bias, %020_convolutional_bn_mean, %020_convolutional_bn_var)
  %020_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%020_convolutional_bn)
  %021_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%020_convolutional_lrelu, %021_convolutional_conv_weights)
  %021_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%021_convolutional, %021_convolutional_bn_scale, %021_convolutional_bn_bias, %021_convolutional_bn_mean, %021_convolutional_bn_var)
  %021_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%021_convolutional_bn)
  %022_shortcut = Add(%021_convolutional_lrelu, %019_shortcut)
  %023_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%022_shortcut, %023_convolutional_conv_weights)
  %023_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%023_convolutional, %023_convolutional_bn_scale, %023_convolutional_bn_bias, %023_convolutional_bn_mean, %023_convolutional_bn_var)
  %023_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%023_convolutional_bn)
  %024_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%023_convolutional_lrelu, %024_convolutional_conv_weights)
  %024_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%024_convolutional, %024_convolutional_bn_scale, %024_convolutional_bn_bias, %024_convolutional_bn_mean, %024_convolutional_bn_var)
  %024_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%024_convolutional_bn)
  %025_shortcut = Add(%024_convolutional_lrelu, %022_shortcut)
  %026_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%025_shortcut, %026_convolutional_conv_weights)
  %026_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%026_convolutional, %026_convolutional_bn_scale, %026_convolutional_bn_bias, %026_convolutional_bn_mean, %026_convolutional_bn_var)
  %026_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%026_convolutional_bn)
  %027_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%026_convolutional_lrelu, %027_convolutional_conv_weights)
  %027_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%027_convolutional, %027_convolutional_bn_scale, %027_convolutional_bn_bias, %027_convolutional_bn_mean, %027_convolutional_bn_var)
  %027_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%027_convolutional_bn)
  %028_shortcut = Add(%027_convolutional_lrelu, %025_shortcut)
  %029_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%028_shortcut, %029_convolutional_conv_weights)
  %029_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%029_convolutional, %029_convolutional_bn_scale, %029_convolutional_bn_bias, %029_convolutional_bn_mean, %029_convolutional_bn_var)
  %029_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%029_convolutional_bn)
  %030_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%029_convolutional_lrelu, %030_convolutional_conv_weights)
  %030_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%030_convolutional, %030_convolutional_bn_scale, %030_convolutional_bn_bias, %030_convolutional_bn_mean, %030_convolutional_bn_var)
  %030_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%030_convolutional_bn)
  %031_shortcut = Add(%030_convolutional_lrelu, %028_shortcut)
  %032_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%031_shortcut, %032_convolutional_conv_weights)
  %032_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%032_convolutional, %032_convolutional_bn_scale, %032_convolutional_bn_bias, %032_convolutional_bn_mean, %032_convolutional_bn_var)
  %032_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%032_convolutional_bn)
  %033_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%032_convolutional_lrelu, %033_convolutional_conv_weights)
  %033_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%033_convolutional, %033_convolutional_bn_scale, %033_convolutional_bn_bias, %033_convolutional_bn_mean, %033_convolutional_bn_var)
  %033_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%033_convolutional_bn)
  %034_shortcut = Add(%033_convolutional_lrelu, %031_shortcut)
  %035_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%034_shortcut, %035_convolutional_conv_weights)
  %035_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%035_convolutional, %035_convolutional_bn_scale, %035_convolutional_bn_bias, %035_convolutional_bn_mean, %035_convolutional_bn_var)
  %035_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%035_convolutional_bn)
  %036_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%035_convolutional_lrelu, %036_convolutional_conv_weights)
  %036_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%036_convolutional, %036_convolutional_bn_scale, %036_convolutional_bn_bias, %036_convolutional_bn_mean, %036_convolutional_bn_var)
  %036_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%036_convolutional_bn)
  %037_shortcut = Add(%036_convolutional_lrelu, %034_shortcut)
  %038_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [2, 2]](%037_shortcut, %038_convolutional_conv_weights)
  %038_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%038_convolutional, %038_convolutional_bn_scale, %038_convolutional_bn_bias, %038_convolutional_bn_mean, %038_convolutional_bn_var)
  %038_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%038_convolutional_bn)
  %039_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%038_convolutional_lrelu, %039_convolutional_conv_weights)
  %039_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%039_convolutional, %039_convolutional_bn_scale, %039_convolutional_bn_bias, %039_convolutional_bn_mean, %039_convolutional_bn_var)
  %039_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%039_convolutional_bn)
  %040_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%039_convolutional_lrelu, %040_convolutional_conv_weights)
  %040_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%040_convolutional, %040_convolutional_bn_scale, %040_convolutional_bn_bias, %040_convolutional_bn_mean, %040_convolutional_bn_var)
  %040_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%040_convolutional_bn)
  %041_shortcut = Add(%040_convolutional_lrelu, %038_convolutional_lrelu)
  %042_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%041_shortcut, %042_convolutional_conv_weights)
  %042_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%042_convolutional, %042_convolutional_bn_scale, %042_convolutional_bn_bias, %042_convolutional_bn_mean, %042_convolutional_bn_var)
  %042_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%042_convolutional_bn)
  %043_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%042_convolutional_lrelu, %043_convolutional_conv_weights)
  %043_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%043_convolutional, %043_convolutional_bn_scale, %043_convolutional_bn_bias, %043_convolutional_bn_mean, %043_convolutional_bn_var)
  %043_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%043_convolutional_bn)
  %044_shortcut = Add(%043_convolutional_lrelu, %041_shortcut)
  %045_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%044_shortcut, %045_convolutional_conv_weights)
  %045_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%045_convolutional, %045_convolutional_bn_scale, %045_convolutional_bn_bias, %045_convolutional_bn_mean, %045_convolutional_bn_var)
  %045_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%045_convolutional_bn)
  %046_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%045_convolutional_lrelu, %046_convolutional_conv_weights)
  %046_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%046_convolutional, %046_convolutional_bn_scale, %046_convolutional_bn_bias, %046_convolutional_bn_mean, %046_convolutional_bn_var)
  %046_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%046_convolutional_bn)
  %047_shortcut = Add(%046_convolutional_lrelu, %044_shortcut)
  %048_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%047_shortcut, %048_convolutional_conv_weights)
  %048_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%048_convolutional, %048_convolutional_bn_scale, %048_convolutional_bn_bias, %048_convolutional_bn_mean, %048_convolutional_bn_var)
  %048_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%048_convolutional_bn)
  %049_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%048_convolutional_lrelu, %049_convolutional_conv_weights)
  %049_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%049_convolutional, %049_convolutional_bn_scale, %049_convolutional_bn_bias, %049_convolutional_bn_mean, %049_convolutional_bn_var)
  %049_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%049_convolutional_bn)
  %050_shortcut = Add(%049_convolutional_lrelu, %047_shortcut)
  %051_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%050_shortcut, %051_convolutional_conv_weights)
  %051_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%051_convolutional, %051_convolutional_bn_scale, %051_convolutional_bn_bias, %051_convolutional_bn_mean, %051_convolutional_bn_var)
  %051_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%051_convolutional_bn)
  %052_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%051_convolutional_lrelu, %052_convolutional_conv_weights)
  %052_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%052_convolutional, %052_convolutional_bn_scale, %052_convolutional_bn_bias, %052_convolutional_bn_mean, %052_convolutional_bn_var)
  %052_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%052_convolutional_bn)
  %053_shortcut = Add(%052_convolutional_lrelu, %050_shortcut)
  %054_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%053_shortcut, %054_convolutional_conv_weights)
  %054_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%054_convolutional, %054_convolutional_bn_scale, %054_convolutional_bn_bias, %054_convolutional_bn_mean, %054_convolutional_bn_var)
  %054_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%054_convolutional_bn)
  %055_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%054_convolutional_lrelu, %055_convolutional_conv_weights)
  %055_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%055_convolutional, %055_convolutional_bn_scale, %055_convolutional_bn_bias, %055_convolutional_bn_mean, %055_convolutional_bn_var)
  %055_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%055_convolutional_bn)
  %056_shortcut = Add(%055_convolutional_lrelu, %053_shortcut)
  %057_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%056_shortcut, %057_convolutional_conv_weights)
  %057_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%057_convolutional, %057_convolutional_bn_scale, %057_convolutional_bn_bias, %057_convolutional_bn_mean, %057_convolutional_bn_var)
  %057_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%057_convolutional_bn)
  %058_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%057_convolutional_lrelu, %058_convolutional_conv_weights)
  %058_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%058_convolutional, %058_convolutional_bn_scale, %058_convolutional_bn_bias, %058_convolutional_bn_mean, %058_convolutional_bn_var)
  %058_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%058_convolutional_bn)
  %059_shortcut = Add(%058_convolutional_lrelu, %056_shortcut)
  %060_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%059_shortcut, %060_convolutional_conv_weights)
  %060_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%060_convolutional, %060_convolutional_bn_scale, %060_convolutional_bn_bias, %060_convolutional_bn_mean, %060_convolutional_bn_var)
  %060_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%060_convolutional_bn)
  %061_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%060_convolutional_lrelu, %061_convolutional_conv_weights)
  %061_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%061_convolutional, %061_convolutional_bn_scale, %061_convolutional_bn_bias, %061_convolutional_bn_mean, %061_convolutional_bn_var)
  %061_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%061_convolutional_bn)
  %062_shortcut = Add(%061_convolutional_lrelu, %059_shortcut)
  %063_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [2, 2]](%062_shortcut, %063_convolutional_conv_weights)
  %063_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%063_convolutional, %063_convolutional_bn_scale, %063_convolutional_bn_bias, %063_convolutional_bn_mean, %063_convolutional_bn_var)
  %063_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%063_convolutional_bn)
  %064_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%063_convolutional_lrelu, %064_convolutional_conv_weights)
  %064_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%064_convolutional, %064_convolutional_bn_scale, %064_convolutional_bn_bias, %064_convolutional_bn_mean, %064_convolutional_bn_var)
  %064_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%064_convolutional_bn)
  %065_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%064_convolutional_lrelu, %065_convolutional_conv_weights)
  %065_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%065_convolutional, %065_convolutional_bn_scale, %065_convolutional_bn_bias, %065_convolutional_bn_mean, %065_convolutional_bn_var)
  %065_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%065_convolutional_bn)
  %066_shortcut = Add(%065_convolutional_lrelu, %063_convolutional_lrelu)
  %067_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%066_shortcut, %067_convolutional_conv_weights)
  %067_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%067_convolutional, %067_convolutional_bn_scale, %067_convolutional_bn_bias, %067_convolutional_bn_mean, %067_convolutional_bn_var)
  %067_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%067_convolutional_bn)
  %068_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%067_convolutional_lrelu, %068_convolutional_conv_weights)
  %068_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%068_convolutional, %068_convolutional_bn_scale, %068_convolutional_bn_bias, %068_convolutional_bn_mean, %068_convolutional_bn_var)
  %068_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%068_convolutional_bn)
  %069_shortcut = Add(%068_convolutional_lrelu, %066_shortcut)
  %070_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%069_shortcut, %070_convolutional_conv_weights)
  %070_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%070_convolutional, %070_convolutional_bn_scale, %070_convolutional_bn_bias, %070_convolutional_bn_mean, %070_convolutional_bn_var)
  %070_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%070_convolutional_bn)
  %071_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%070_convolutional_lrelu, %071_convolutional_conv_weights)
  %071_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%071_convolutional, %071_convolutional_bn_scale, %071_convolutional_bn_bias, %071_convolutional_bn_mean, %071_convolutional_bn_var)
  %071_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%071_convolutional_bn)
  %072_shortcut = Add(%071_convolutional_lrelu, %069_shortcut)
  %073_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%072_shortcut, %073_convolutional_conv_weights)
  %073_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%073_convolutional, %073_convolutional_bn_scale, %073_convolutional_bn_bias, %073_convolutional_bn_mean, %073_convolutional_bn_var)
  %073_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%073_convolutional_bn)
  %074_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%073_convolutional_lrelu, %074_convolutional_conv_weights)
  %074_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%074_convolutional, %074_convolutional_bn_scale, %074_convolutional_bn_bias, %074_convolutional_bn_mean, %074_convolutional_bn_var)
  %074_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%074_convolutional_bn)
  %075_shortcut = Add(%074_convolutional_lrelu, %072_shortcut)
  %076_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%075_shortcut, %076_convolutional_conv_weights)
  %076_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%076_convolutional, %076_convolutional_bn_scale, %076_convolutional_bn_bias, %076_convolutional_bn_mean, %076_convolutional_bn_var)
  %076_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%076_convolutional_bn)
  %077_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%076_convolutional_lrelu, %077_convolutional_conv_weights)
  %077_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%077_convolutional, %077_convolutional_bn_scale, %077_convolutional_bn_bias, %077_convolutional_bn_mean, %077_convolutional_bn_var)
  %077_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%077_convolutional_bn)
  %078_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%077_convolutional_lrelu, %078_convolutional_conv_weights)
  %078_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%078_convolutional, %078_convolutional_bn_scale, %078_convolutional_bn_bias, %078_convolutional_bn_mean, %078_convolutional_bn_var)
  %078_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%078_convolutional_bn)
  %079_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%078_convolutional_lrelu, %079_convolutional_conv_weights)
  %079_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%079_convolutional, %079_convolutional_bn_scale, %079_convolutional_bn_bias, %079_convolutional_bn_mean, %079_convolutional_bn_var)
  %079_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%079_convolutional_bn)
  %080_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%079_convolutional_lrelu, %080_convolutional_conv_weights)
  %080_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%080_convolutional, %080_convolutional_bn_scale, %080_convolutional_bn_bias, %080_convolutional_bn_mean, %080_convolutional_bn_var)
  %080_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%080_convolutional_bn)
  %081_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%080_convolutional_lrelu, %081_convolutional_conv_weights)
  %081_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%081_convolutional, %081_convolutional_bn_scale, %081_convolutional_bn_bias, %081_convolutional_bn_mean, %081_convolutional_bn_var)
  %081_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%081_convolutional_bn)
  %082_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%081_convolutional_lrelu, %082_convolutional_conv_weights, %082_convolutional_conv_bias)
  %085_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%080_convolutional_lrelu, %085_convolutional_conv_weights)
  %085_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%085_convolutional, %085_convolutional_bn_scale, %085_convolutional_bn_bias, %085_convolutional_bn_mean, %085_convolutional_bn_var)
  %085_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%085_convolutional_bn)
  %086_upsample = Resize[coordinate_transformation_mode = 'asymmetric', mode = 'nearest', nearest_mode = 'floor'](%085_convolutional_lrelu, %086_upsample_roi, %086_upsample_scale)
  %087_route = Concat[axis = 1](%086_upsample, %062_shortcut)
  %088_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%087_route, %088_convolutional_conv_weights)
  %088_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%088_convolutional, %088_convolutional_bn_scale, %088_convolutional_bn_bias, %088_convolutional_bn_mean, %088_convolutional_bn_var)
  %088_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%088_convolutional_bn)
  %089_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%088_convolutional_lrelu, %089_convolutional_conv_weights)
  %089_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%089_convolutional, %089_convolutional_bn_scale, %089_convolutional_bn_bias, %089_convolutional_bn_mean, %089_convolutional_bn_var)
  %089_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%089_convolutional_bn)
  %090_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%089_convolutional_lrelu, %090_convolutional_conv_weights)
  %090_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%090_convolutional, %090_convolutional_bn_scale, %090_convolutional_bn_bias, %090_convolutional_bn_mean, %090_convolutional_bn_var)
  %090_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%090_convolutional_bn)
  %091_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%090_convolutional_lrelu, %091_convolutional_conv_weights)
  %091_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%091_convolutional, %091_convolutional_bn_scale, %091_convolutional_bn_bias, %091_convolutional_bn_mean, %091_convolutional_bn_var)
  %091_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%091_convolutional_bn)
  %092_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%091_convolutional_lrelu, %092_convolutional_conv_weights)
  %092_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%092_convolutional, %092_convolutional_bn_scale, %092_convolutional_bn_bias, %092_convolutional_bn_mean, %092_convolutional_bn_var)
  %092_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%092_convolutional_bn)
  %093_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%092_convolutional_lrelu, %093_convolutional_conv_weights)
  %093_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%093_convolutional, %093_convolutional_bn_scale, %093_convolutional_bn_bias, %093_convolutional_bn_mean, %093_convolutional_bn_var)
  %093_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%093_convolutional_bn)
  %094_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%093_convolutional_lrelu, %094_convolutional_conv_weights, %094_convolutional_conv_bias)
  %097_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%092_convolutional_lrelu, %097_convolutional_conv_weights)
  %097_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%097_convolutional, %097_convolutional_bn_scale, %097_convolutional_bn_bias, %097_convolutional_bn_mean, %097_convolutional_bn_var)
  %097_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%097_convolutional_bn)
  %098_upsample = Resize[coordinate_transformation_mode = 'asymmetric', mode = 'nearest', nearest_mode = 'floor'](%097_convolutional_lrelu, %098_upsample_roi, %098_upsample_scale)
  %099_route = Concat[axis = 1](%098_upsample, %037_shortcut)
  %100_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%099_route, %100_convolutional_conv_weights)
  %100_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%100_convolutional, %100_convolutional_bn_scale, %100_convolutional_bn_bias, %100_convolutional_bn_mean, %100_convolutional_bn_var)
  %100_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%100_convolutional_bn)
  %101_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%100_convolutional_lrelu, %101_convolutional_conv_weights)
  %101_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%101_convolutional, %101_convolutional_bn_scale, %101_convolutional_bn_bias, %101_convolutional_bn_mean, %101_convolutional_bn_var)
  %101_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%101_convolutional_bn)
  %102_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%101_convolutional_lrelu, %102_convolutional_conv_weights)
  %102_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%102_convolutional, %102_convolutional_bn_scale, %102_convolutional_bn_bias, %102_convolutional_bn_mean, %102_convolutional_bn_var)
  %102_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%102_convolutional_bn)
  %103_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%102_convolutional_lrelu, %103_convolutional_conv_weights)
  %103_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%103_convolutional, %103_convolutional_bn_scale, %103_convolutional_bn_bias, %103_convolutional_bn_mean, %103_convolutional_bn_var)
  %103_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%103_convolutional_bn)
  %104_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%103_convolutional_lrelu, %104_convolutional_conv_weights)
  %104_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%104_convolutional, %104_convolutional_bn_scale, %104_convolutional_bn_bias, %104_convolutional_bn_mean, %104_convolutional_bn_var)
  %104_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%104_convolutional_bn)
  %105_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [3, 3], strides = [1, 1]](%104_convolutional_lrelu, %105_convolutional_conv_weights)
  %105_convolutional_bn = BatchNormalization[epsilon = 9.99999974737875e-06, momentum = 0.990000009536743](%105_convolutional, %105_convolutional_bn_scale, %105_convolutional_bn_bias, %105_convolutional_bn_mean, %105_convolutional_bn_var)
  %105_convolutional_lrelu = LeakyRelu[alpha = 0.100000001490116](%105_convolutional_bn)
  %106_convolutional = Conv[auto_pad = 'SAME_LOWER', dilations = [1, 1], kernel_shape = [1, 1], strides = [1, 1]](%105_convolutional_lrelu, %106_convolutional_conv_weights, %106_convolutional_conv_bias)
  return %082_convolutional, %094_convolutional, %106_convolutional
}

Please help me understand.

@SivaRamaKrishnaNV , Please advice.

Dear @raji,
My apologies for missing the topic update.
Do you still have issue?

I see DW_INVALID_ARGUMENT: blobName not found error. Make sure you are using right output blobs.

Hi @SivaRamaKrishnaNV ,

Since there is no onnx graph visualiser how am I supposed to understand the output blobs?
From the logs I can get this information:

....
....
Input filename:   /home/lidar/Documents/Nvidia_Drive/buildCrossCompile/yolov3.onnx
ONNX IR version:  0.0.8
Opset version:    15
Producer name:    NVIDIA TensorRT sample
Producer version: 
Domain:           
Model version:    0
Doc string:       
----------------------------------------------------------------
Input "000_net": 1x3x608x608
Output "082_convolutional": 1x255x19x19
Output "094_convolutional": 1x255x38x38
Output "106_convolutional": 1x255x76x76
...
...
...

Please elaborate.
FYR attaching the original json file having the data conditioner params of the model and the logs file.

Onnx_TRT.txt (766 Bytes)
What should I put in data conditioner params model bin json file? How to know the blob names?

Dear @raji,
I can see below are the input/output nodes from ONNX file from TensorRT optimization log.

Input "000_net": 1x3x608x608
Output "082_convolutional": 1x255x19x19
Output "094_convolutional": 1x255x38x38
Output "106_convolutional": 1x255x76x76

Please confirm if you are using files from /usr/src/tensorrt/samples/python/yolov3_onnx so that I will check reproducing the issue on object detector sample ?

Dear @raji,
You need to use blobs names as 082_convolutional, 094_convolutional and 106_convolutional.
It looks like you are using wrong blob name for coverageBlobName variable.

Yes in my host system, I’m using files from “/usr/src/tensorrt/samples/python/yolov3_onnx”

 // Get coverage and bounding box blob indices
            const char* coverageBlobName    = "coverage";
            const char* boundingBoxBlobName = "bboxes";
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_cvgIdx, coverageBlobName, m_dnn));
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_bboxIdx, boundingBoxBlobName, m_dnn));

Shall I modify the code at “/usr/local/driveworks-3.5/samples/src/dnn/sample_object_detector_tracker/main.cpp” as below in my host system and then cross-compile to generate the executable which I will transfer to target system?

 // Get coverage and bounding box blob indices
            const char* coverageBlobName    = "082_convolutional";
            const char* boundingBoxBlobName = "082_convolutional";
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_cvgIdx, coverageBlobName, m_dnn));
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_bboxIdx, boundingBoxBlobName, m_dnn));

 // Get coverage and bounding box blob indices
            const char* coverageBlobName    = "094_convolutional";
            const char* boundingBoxBlobName = "094_convolutional";
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_cvgIdx, coverageBlobName, m_dnn));
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_bboxIdx, boundingBoxBlobName, m_dnn));


 // Get coverage and bounding box blob indices
            const char* coverageBlobName    = "106_convolutional";
            const char* boundingBoxBlobName = "106_convolutional";
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_cvgIdx, coverageBlobName, m_dnn));
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_bboxIdx, boundingBoxBlobName, m_dnn));

@SivaRamaKrishnaNV , could you please look into this and let me know if this code changes is going to work?

Dear @raji,
Note that replacing the model used in object detector tracker sample with yolo v3 does not work out of the box. The post processing of each model is different. In case of yolo v3, you get 3 arrays of different scales. Each array will have information about detected objects like bounding box, object confidence, class array at different scale. You need to post process these arrays to get final bouding boxes. Please check data processing functions in TensorRT yolo v3 python sample.

You may use code like below as a reference

 CHECK_DW_ERROR(dwDNN_getInputSize(&m_networkInputDimensions, 0U, m_dnn));
            CHECK_DW_ERROR(dwDNN_getOutputSize(&m_networkOutputDimensions[0], 0U, m_dnn));
            CHECK_DW_ERROR(dwDNN_getOutputSize(&m_networkOutputDimensions[1], 1U, m_dnn));
            CHECK_DW_ERROR(dwDNN_getOutputSize(&m_networkOutputDimensions[2], 2U, m_dnn)); //added
            auto getTotalSize = [](const dwBlobSize& blobSize) {
                return blobSize.channels * blobSize.height * blobSize.width;
            };
            // Calculate total size needed to store input and output
            m_totalSizeInput      = getTotalSize(m_networkInputDimensions);
            m_totalSizesOutput[0] = getTotalSize(m_networkOutputDimensions[0]);
            m_totalSizesOutput[1] = getTotalSize(m_networkOutputDimensions[1]);
            m_totalSizesOutput[2] = getTotalSize(m_networkOutputDimensions[2]); //added
            // Get coverage and bounding box blob indices
            const char* largeBlobName    = "082_convolutional";//added
            const char* mediumBlobName    = "094_convolutional";//added
//            const char* coverageBlobName    = "coverage";
            const char* smallBlobName = "106_convolutional";
//            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_cvgIdx, coverageBlobName, m_dnn));
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_largeIdx, largeBlobName, m_dnn)); //added
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_mediumIdx, mediumBlobName, m_dnn));
            CHECK_DW_ERROR(dwDNN_getOutputIndex(&m_smallIdx, smallBlobName, m_dnn)); //added
            std::cout<<"m_largeIdx= "<<m_largeIdx<<"m_mediumIdx= "<<m_mediumIdx<<"m_smallIdx= "<<m_smallIdx<<std::endl;
            // Allocate GPU memory
            CHECK_CUDA_ERROR(cudaMalloc((void**)&m_dnnInputDevice, sizeof(float32_t) * m_totalSizeInput));
            CHECK_CUDA_ERROR(cudaMalloc((void**)&m_dnnOutputsDevice[0],
                                        sizeof(float32_t) * m_totalSizesOutput[0]));
            CHECK_CUDA_ERROR(cudaMalloc((void**)&m_dnnOutputsDevice[1],
                                        sizeof(float32_t) * m_totalSizesOutput[1]));
            CHECK_CUDA_ERROR(cudaMalloc((void**)&m_dnnOutputsDevice[2],
                                        sizeof(float32_t) * m_totalSizesOutput[2])); //added
1 Like