• Hardware Platform (Jetson / GPU): Jetson Nano
• DeepStream Version: 5.1
• JetPack Version (valid for Jetson only): 4.5.1[L4T 32.5.1]
• TensorRT Version: 7.1.3.0
• Issue Type( questions, new requirements, bugs): questions
Hi,
I use jetson-inference to train classification models and object detection models. The classification uses the resnet18 model, and Object Detection is an ssd-mobilenet model, which is converted to ONNX and placed in DeepStream for inference.
For primary-gies, refer to GitHub - neilyoung/nvdsinfer_custom_impl_onnx, the effect is good, but the inference result of the Classification model as the secondary-gie is not as expected. Don’t know where the problem is?
The following are my settings:
• main_config_file.txt
[primary-gie]
enable=1
gpu-id=0
batch-size=1
gie-unique-id=1
interval=1
config-file=config_infer_primary_ssd.txt
nvbuf-memory-type=0
[secondary-gie0]
enable=1
gpu-id=0
batch-size=1
gie-unique-id=2
interval=3
operate-on-gie-id=1
#operate-on-class-ids=1
config-file=config_infer_secondary_mcu.txt
• config_infer_primary_ssd.txt
[property]
net-scale-factor=0.0078431372
offsets=127.5;127.5;127.5
model-color-format=0
model-engine-file=models/ssd_model.onnx_b1_gpu0_fp16.engine
labelfile-path=models/ssd_labels.txt
onnx-file=models/ssd_model.onnx
infer-dims=3;300;300
#0=FP32, 1=INT8, 2=FP16 mode
network-mode=2
num-detected-classes=3
output-blob-names=boxes;scores
parse-bbox-func-name=NvDsInferParseCustomONNX
custom-lib-path=nvdsinfer_custom_impl_onnx/libnvdsinfer_custom_impl_onnx.so
#scaling-filter=0
#scaling-compute-hw=0
[class-attrs-all]
pre-cluster-threshold=0.2
eps=0.2
group-threshold=1
• config_infer_secondary_mcu.txt
[property]
net-scale-factor=1
model-engine-file=models/resnet18_model.onnx_b1_gpu0_fp16.engine
labelfile-path=models/resnet18_labels.txt
onnx-file=models/resnet18_model.onnx
#force-implicit-batch-dim=1
batch-size=1
model-color-format=0
process-mode=2
infer-dims=3;224;224
#0=FP32, 1=INT8, 2=FP16 mode
network-mode=2
is-classifier=1
classifier-async-mode=1
classifier-threshold=0.2
input-object-min-width=128
input-object-min-height=128
#scaling-filter=0
#scaling-compute-hw=0
Thanks.