Streaming stopped, reason not-linked (-1) Segmentation fault (core dumped)

Error: Error: gst-stream-error-quark: Internal data stream error. (1): gstnvinfer.cpp(1812): gst_nvinfer_submit_input_buffer (): /GstPipeline:pipeline0/GstNvInfer:secondary1-nvinference-engine: streaming stopped, reason not-linked (-1) Segmentation fault (core dumped)

I am trying to integrate 2 models and running deepstream-test-2 app

here are my config files

Primary model -
[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
tlt-model-key=tlt_encode
tlt-encoded-model=resnet18_trafficcamnet_pruned.etlt
labelfile-path=labels_trafficnet-Copy1.txt
int8-calib-file=trafficnet_int8.txt
#model-engine-file=…/…/models/tlt_pretrained_models/trafficcamnet/resnet18_trafficcamnet_pruned.etlt_b1_gpu0_int8.engine
input-dims=3;544;960;0
uff-input-blob-name=input_1
batch-size=1
process-mode=1
model-color-format=0

0=FP32, 1=INT8, 2=FP16 mode

network-mode=1
num-detected-classes=4
interval=0
gie-unique-id=1
output-blob-names=output_bbox/BiasAdd;output_cov/Sigmoid

[class-attrs-all]
pre-cluster-threshold=0.2
group-threshold=1

Set eps=0.7 and minBoxes for cluster-mode=1(DBSCAN)

eps=0.2
#minBoxes=3

Secondary Model
[property]
gpu-id=0
net-scale-factor=1
model-file=resnet18.caffemodel
proto-file=resnet18.prototxt
#model-engine-file=…/…/…/…/samples/models/Secondary_CarColor/resnet18.caffemodel_b16_gpu0_int8.engine
mean-file=mean.ppm
labelfile-path=labels-sgie1.txt
int8-calib-file=cal_trt.bin
force-implicit-batch-dim=1
batch-size=16

0=FP32 and 1=INT8 mode

network-mode=1
input-object-min-width=64
input-object-min-height=64
process-mode=2
model-color-format=1
gie-unique-id=2
operate-on-gie-id=1
#operate-on-class-ids=0
is-classifier=1
output-blob-names=predictions/Softmax
classifier-async-mode=1
classifier-threshold=0.51
#scaling-filter=0
#scaling-compute-hw=0

Python file

import gi
import configparser
gi.require_version(‘Gst’, ‘1.0’)
from gi.repository import GObject, Gst, GstRtspServer
from gi.repository import GLib
from ctypes import *
import time
import sys
sys.path.append(‘…/’)
import math
import platform
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
from common.FPS import GETFPS
import sys
sys.path.append(‘…/’)
import platform
import configparser

import gi
gi.require_version(‘Gst’, ‘1.0’)
from gi.repository import GObject, Gst
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call

import pyds
codec=“H264”
bitrate=4000000
fps_streams={}
frame_count = {}
saved_count = {}
MAX_DISPLAY_LEN=64

PGIE_CLASS_ID_CAR = 0
PGIE_CLASS_ID_BICYCLE = 1
PGIE_CLASS_ID_PERSON = 2
PGIE_CLASS_ID_ROADSIGN = 3
past_tracking_meta=[0]

MUXER_OUTPUT_WIDTH=1920
MUXER_OUTPUT_HEIGHT=1080
MUXER_BATCH_TIMEOUT_USEC=4000000
TILED_OUTPUT_WIDTH=1280
TILED_OUTPUT_HEIGHT=720
GST_CAPS_FEATURES_NVMM=“memory:NVMM”
OSD_PROCESS_MODE= 0
OSD_DISPLAY_TEXT= 1

pgie_classes_str= [“Vehicle”, “TwoWheeler”, “Person”,“RoadSign”]

def osd_sink_pad_buffer_probe(pad,info,u_data):
frame_number=0
#Intiallizing object counter with 0.
obj_counter = {
PGIE_CLASS_ID_CAR:0,
PGIE_CLASS_ID_PERSON:0,
PGIE_CLASS_ID_BICYCLE:0,
PGIE_CLASS_ID_ROADSIGN:0
}
num_rects=0
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer ")
return

# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
    try:
        # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
        # The casting is done by pyds.NvDsFrameMeta.cast()
        # The casting also keeps ownership of the underlying memory
        # in the C code, so the Python garbage collector will leave
        # it alone.
        frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
    except StopIteration:
        break

    frame_number=frame_meta.frame_num
    num_rects = frame_meta.num_obj_meta
    l_obj=frame_meta.obj_meta_list
    while l_obj is not None:
        try:
            # Casting l_obj.data to pyds.NvDsObjectMeta
            obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
        except StopIteration:
            break
        obj_counter[obj_meta.class_id] += 1
        try: 
            l_obj=l_obj.next
        except StopIteration:
            break

    # Acquiring a display meta object. The memory ownership remains in
    # the C code so downstream plugins can still access it. Otherwise
    # the garbage collector will claim it when this probe function exits.
    display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta)
    display_meta.num_labels = 1
    py_nvosd_text_params = display_meta.text_params[0]
    # Setting display text to be shown on screen
    # Note that the pyds module allocates a buffer for the string, and the
    # memory will not be claimed by the garbage collector.
    # Reading the display_text field here will return the C address of the
    # allocated string. Use pyds.get_string() to get the string content.
    py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Car_count={} ".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_CAR])

    # Now set the offsets where the string should appear
    py_nvosd_text_params.x_offset = 10
    py_nvosd_text_params.y_offset = 12

    # Font , font-color and font-size
    py_nvosd_text_params.font_params.font_name = "Serif"
    py_nvosd_text_params.font_params.font_size = 10
    # set(red, green, blue, alpha); set to White
    py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0)

    # Text background color
    py_nvosd_text_params.set_bg_clr = 1
    # set(red, green, blue, alpha); set to Black
    py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0)
    # Using pyds.get_string() to get display_text as string
    print(pyds.get_string(py_nvosd_text_params.display_text))
    pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta)
    try:
        l_frame=l_frame.next
    except StopIteration:
        break
#past traking meta data
if(past_tracking_meta[0]==1):
    l_user=batch_meta.batch_user_meta_list
    while l_user is not None:
        try:
            # Note that l_user.data needs a cast to pyds.NvDsUserMeta
            # The casting is done by pyds.NvDsUserMeta.cast()
            # The casting also keeps ownership of the underlying memory
            # in the C code, so the Python garbage collector will leave
            # it alone
            user_meta=pyds.NvDsUserMeta.cast(l_user.data)
        except StopIteration:
            break
        if(user_meta and user_meta.base_meta.meta_type==pyds.NvDsMetaType.NVDS_TRACKER_PAST_FRAME_META):
            try:
                # Note that user_meta.user_meta_data needs a cast to pyds.NvDsPastFrameObjBatch
                # The casting is done by pyds.NvDsPastFrameObjBatch.cast()
                # The casting also keeps ownership of the underlying memory
                # in the C code, so the Python garbage collector will leave
                # it alone
                pPastFrameObjBatch = pyds.NvDsPastFrameObjBatch.cast(user_meta.user_meta_data)
            except StopIteration:
                break
            for trackobj in pyds.NvDsPastFrameObjBatch.list(pPastFrameObjBatch):
                print("streamId=",trackobj.streamID)
                print("surfaceStreamID=",trackobj.surfaceStreamID)
                for pastframeobj in pyds.NvDsPastFrameObjStream.list(trackobj):
                    print("numobj=",pastframeobj.numObj)
                    print("uniqueId=",pastframeobj.uniqueId)
                    print("classId=",pastframeobj.classId)
                    print("objLabel=",pastframeobj.objLabel)
                    for objlist in pyds.NvDsPastFrameObjList.list(pastframeobj):
                        print('frameNum:', objlist.frameNum)
                        print('tBbox.left:', objlist.tBbox.left)
                        print('tBbox.width:', objlist.tBbox.width)
                        print('tBbox.top:', objlist.tBbox.top)
                        print('tBbox.right:', objlist.tBbox.height)
                        print('confidence:', objlist.confidence)
                        print('age:', objlist.age)
        try:
            l_user=l_user.next
        except StopIteration:
            break
return Gst.PadProbeReturn.OK	

def cb_newpad(decodebin, decoder_src_pad, data):
print(“In cb_newpad\n”)
caps = decoder_src_pad.get_current_caps()
gststruct = caps.get_structure(0)
gstname = gststruct.get_name()
source_bin = data
features = caps.get_features(0)

# Need to check if the pad created by the decodebin is for video and not
# audio.
if (gstname.find("video") != -1):
    # Link the decodebin pad only if decodebin has picked nvidia
    # decoder plugin nvdec_*. We do this by checking if the pad caps contain
    # NVMM memory features.
    if features.contains("memory:NVMM"):
        # Get the source bin ghost pad
        bin_ghost_pad = source_bin.get_static_pad("src")
        if not bin_ghost_pad.set_target(decoder_src_pad):
            sys.stderr.write("Failed to link decoder src pad to source bin ghost pad\n")
    else:
        sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n")

def decodebin_child_added(child_proxy, Object, name, user_data):
print(“Decodebin child added:”, name, “\n”)
if name.find(“decodebin”) != -1:
Object.connect(“child-added”, decodebin_child_added, user_data)

def create_source_bin(index, uri):
print(“Creating source bin”)

# Create a source GstBin to abstract this bin's content from the rest of the
# pipeline
bin_name = "source-bin-%02d" % index
print(bin_name)
nbin = Gst.Bin.new(bin_name)
if not nbin:
    sys.stderr.write(" Unable to create source bin \n")

# Source element for reading from the uri.
# We will use decodebin and let it figure out the container format of the
# stream and the codec and plug the appropriate demux and decode plugins.
uri_decode_bin = Gst.ElementFactory.make("uridecodebin", "uri-decode-bin")
if not uri_decode_bin:
    sys.stderr.write(" Unable to create uri decode bin \n")
# We set the input uri to the source element
uri_decode_bin.set_property("uri", uri)
# Connect to the "pad-added" signal of the decodebin which generates a
# callback once a new pad for raw data has beed created by the decodebin
uri_decode_bin.connect("pad-added", cb_newpad, nbin)
uri_decode_bin.connect("child-added", decodebin_child_added, nbin)

# We need to create a ghost pad for the source bin which will act as a proxy
# for the video decoder src pad. The ghost pad will not have a target right
# now. Once the decode bin creates the video decoder and generates the
# cb_newpad callback, we will set the ghost pad target to the video decoder
# src pad.
Gst.Bin.add(nbin, uri_decode_bin)
bin_pad = nbin.add_pad(Gst.GhostPad.new_no_target("src", Gst.PadDirection.SRC))
if not bin_pad:
    sys.stderr.write(" Failed to add ghost pad in source bin \n")
    return None
return nbin

def main(args):

# Check input arguments
if len(args) < 2:
    sys.stderr.write("usage: %s <uri1> [uri2] ... [uriN] <folder to save frames>\n" % args[0])
    sys.exit(1)

for i in range(0, len(args) - 1):
    fps_streams["stream{0}".format(i)] = GETFPS(i)
number_sources = len(args) - 1



GObject.threads_init()
Gst.init(None)

# Create gstreamer elements
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()

if not pipeline:
    sys.stderr.write(" Unable to create Pipeline \n")

streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
    sys.stderr.write(" Unable to create NvStreamMux \n")
pipeline.add(streammux)

for i in range(number_sources):
    frame_count["stream_" + str(i)] = 0
    saved_count["stream_" + str(i)] = 0
    print("Creating source_bin ", i, " \n ")
    uri_name = args[i + 1]
    if uri_name.find("rtsp://") == 0:
        is_live = True
    source_bin = create_source_bin(i, uri_name)
    if not source_bin:
        sys.stderr.write("Unable to create source bin \n")
    pipeline.add(source_bin)
    padname = "sink_%u" % i
    sinkpad = streammux.get_request_pad(padname)
    if not sinkpad:
        sys.stderr.write("Unable to create sink pad bin \n")
    srcpad = source_bin.get_static_pad("src")
    if not srcpad:
        sys.stderr.write("Unable to create src pad bin \n")
    srcpad.link(sinkpad)





# Use nvinfer to run inferencing on decoder's output,
# behaviour of inferencing is set through config file
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not pgie:
    sys.stderr.write(" Unable to create pgie \n")

tracker = Gst.ElementFactory.make("nvtracker", "tracker")
if not tracker:
    sys.stderr.write(" Unable to create tracker \n")

sgie1 = Gst.ElementFactory.make("nvinfer", "secondary1-nvinference-engine")
if not sgie1:
    sys.stderr.write(" Unable to make sgie1 \n")
nvvidconv1 = Gst.ElementFactory.make("nvvideoconvert", "convertor1")
if not nvvidconv1:
    sys.stderr.write(" Unable to create nvvidconv1 \n")

sgie2 = Gst.ElementFactory.make("nvinfer", "secondary2-nvinference-engine")
if not sgie1:
    sys.stderr.write(" Unable to make sgie2 \n")

sgie3 = Gst.ElementFactory.make("nvinfer", "secondary3-nvinference-engine")
if not sgie3:
    sys.stderr.write(" Unable to make sgie3 \n")
    
nvvidconv_postosd = Gst.ElementFactory.make("nvvideoconvert", "convertor_postosd")
if not nvvidconv_postosd:
    sys.stderr.write(" Unable to create nvvidconv_postosd \n")
    
caps1 = Gst.Caps.from_string("video/x-raw(memory:NVMM), format=RGBA")
filter1 = Gst.ElementFactory.make("capsfilter", "filter1")
if not filter1:
    sys.stderr.write(" Unable to get the caps filter1 \n")
    filter1.set_property("caps", caps1)
    
tiler = Gst.ElementFactory.make("nvmultistreamtiler", "nvtiler")
if not tiler:
    sys.stderr.write(" Unable to create tiler \n")

nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
if not nvvidconv:
    sys.stderr.write(" Unable to create nvvidconv \n")
    
caps = Gst.ElementFactory.make("capsfilter", "filter")
caps.set_property("caps", Gst.Caps.from_string("video/x-raw(memory:NVMM), format=I420"))

# Make the encoder
if codec == "H264":
    encoder = Gst.ElementFactory.make("nvv4l2h264enc", "encoder")
    
elif codec == "H265":
    encoder = Gst.ElementFactory.make("nvv4l2h265enc", "encoder")

if not encoder:
    sys.stderr.write(" Unable to create encoder")
encoder.set_property('bitrate', bitrate)

if is_aarch64():
    encoder.set_property('preset-level', 1)
    encoder.set_property('insert-sps-pps', 1)
    encoder.set_property('bufapi-version', 1)
    
# Make the payload-encode video into RTP packets
if codec == "H264":
    rtppay = Gst.ElementFactory.make("rtph264pay", "rtppay")
    print("Creating H264 rtppay")
elif codec == "H265":
    rtppay = Gst.ElementFactory.make("rtph265pay", "rtppay")
    print("Creating H265 rtppay")
if not rtppay:
    sys.stderr.write(" Unable to create rtppay")


# Create OSD to draw on the converted RGBA buffer
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
    sys.stderr.write(" Unable to create nvosd \n")

updsink_port_num = 3400
sink = Gst.ElementFactory.make("udpsink", "udpsink")
if not sink:
    sys.stderr.write(" Unable to create udpsink")
sink.set_property('host', '224.224.255.255')
sink.set_property('port', updsink_port_num)
sink.set_property('async', False)
sink.set_property('sync', 1)



if is_live:
    print("Atleast one of the sources is live")
    streammux.set_property('live-source', 1)

streammux.set_property('width', 1920)
streammux.set_property('height', 1080)
streammux.set_property('batch-size', number_sources)
streammux.set_property('batched-push-timeout', 4000000)

tiler_rows = int(math.sqrt(number_sources))
tiler_columns = int(math.ceil((1.0 * number_sources) / tiler_rows))
tiler.set_property("rows", tiler_rows)
tiler.set_property("columns", tiler_columns)
tiler.set_property("width", 1024)
tiler.set_property("height", 1024)


if not is_aarch64():
    mem_type = int(pyds.NVBUF_MEM_CUDA_UNIFIED)
    streammux.set_property("nvbuf-memory-type", mem_type)
    nvvidconv.set_property("nvbuf-memory-type", mem_type)
    nvvidconv1.set_property("nvbuf-memory-type", mem_type)
    tiler.set_property("nvbuf-memory-type", mem_type)


#Set properties of pgie and sgie
pgie.set_property('config-file-path', "dstest2_pgie_config.txt")
sgie1.set_property('config-file-path', "dstest2_sgie1_config.txt")


#Set properties of tracker
config = configparser.ConfigParser()
config.read('dstest2_tracker_config.txt')
config.sections()

for key in config['tracker']:
    if key == 'tracker-width' :
        tracker_width = config.getint('tracker', key)
        tracker.set_property('tracker-width', tracker_width)
    if key == 'tracker-height' :
        tracker_height = config.getint('tracker', key)
        tracker.set_property('tracker-height', tracker_height)
    if key == 'gpu-id' :
        tracker_gpu_id = config.getint('tracker', key)
        tracker.set_property('gpu_id', tracker_gpu_id)
    if key == 'll-lib-file' :
        tracker_ll_lib_file = config.get('tracker', key)
        tracker.set_property('ll-lib-file', tracker_ll_lib_file)
    if key == 'll-config-file' :
        tracker_ll_config_file = config.get('tracker', key)
        tracker.set_property('ll-config-file', tracker_ll_config_file)
    if key == 'enable-batch-process' :
        tracker_enable_batch_process = config.getint('tracker', key)
        tracker.set_property('enable_batch_process', tracker_enable_batch_process)
    if key == 'enable-past-frame' :
        tracker_enable_past_frame = config.getint('tracker', key)
        tracker.set_property('enable_past_frame', tracker_enable_past_frame)

print("Adding elements to Pipeline \n")

#pipeline.add(decoder)
pipeline.add(pgie)
pipeline.add(tracker)
pipeline.add(sgie1)
pipeline.add(nvvidconv)
pipeline.add(nvvidconv1)
pipeline.add(nvosd)
pipeline.add(nvvidconv_postosd)
pipeline.add(caps)
pipeline.add(encoder)
pipeline.add(rtppay)
pipeline.add(sink)



streammux.link(pgie)
pgie.link(tracker)
tracker.link(sgie1)
sgie1.link(nvvidconv1)
#tracker.link(nvvidconv1)
nvvidconv1.link(filter1)
filter1.link(tiler)
tiler.link(nvvidconv)
nvvidconv.link(nvosd)
nvosd.link(nvvidconv_postosd)
nvvidconv_postosd.link(caps)
caps.link(encoder)
encoder.link(rtppay)
rtppay.link(sink)


# create and event loop and feed gstreamer bus mesages to it
loop = GObject.MainLoop()

bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect ("message", bus_call, loop)

# Start streaming
rtsp_port_num = 9091

server = GstRtspServer.RTSPServer.new()
server.props.service = "%d" % rtsp_port_num
server.attach(None)

factory = GstRtspServer.RTSPMediaFactory.new()
factory.set_launch( "( udpsrc name=pay0 port=%d buffer-size=524288 caps=\"application/x-rtp, media=video, clock-rate=90000, encoding-name=(string)%s, payload=96 \" )" % (updsink_port_num, codec))
factory.set_shared(True)
server.get_mount_points().add_factory("/ds-test", factory)

print("\n *** DeepStream: Launched RTSP Streaming at rtsp://localhost:%d/ds-test ***\n\n" % rtsp_port_num)

# Lets add probe to get informed of the meta data generated, we add probe to
# the sink pad of the osd element, since by that time, the buffer would have
# had got all the metadata.
osdsinkpad = nvosd.get_static_pad("sink")
if not osdsinkpad:
    sys.stderr.write(" Unable to get sink pad of nvosd \n")
osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)


print("Starting pipeline \n")

# start play back and listed to events
pipeline.set_state(Gst.State.PLAYING)
try:
  loop.run()
except:
  pass

# cleanup
pipeline.set_state(Gst.State.NULL)

if name == ‘main’:
sys.exit(main(sys.argv))

There is no update from you for a period, assuming this is not an issue any more.
Hence we are closing this topic. If need further support, please open a new one.
Thanks

Please provide complete information as applicable to your setup.

• Hardware Platform (Jetson / GPU)
• DeepStream Version
• JetPack Version (valid for Jetson only)
• TensorRT Version
• NVIDIA GPU Driver Version (valid for GPU only)