Deepstream how to unique id tag to the detected objet

• Hardware Platform (Jetson / GPU) GPU
• DeepStream Version 6.4
• TensorRT Version 8.6.1.6-1+cuda12.0
• NVIDIA GPU Driver Version (valid for GPU only) 545.23.08

this is my output that i get using python code

actually i need the unique id to be mentioned also like this
here i used txt file code format

How do i do it and need some reference

What do you mean? Do you need the object id to be unique in all the streams in the batch?

What is your pipeline and configurations?

#!/usr/bin/env python3

################################################################################

SPDX-FileCopyrightText: Copyright (c) 2021-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

SPDX-License-Identifier: Apache-2.0

Licensed under the Apache License, Version 2.0 (the “License”);

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

Apache License, Version 2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an “AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

################################################################################

import argparse
import sys

sys.path.append(‘…/’)
import gi
import configparser

gi.require_version(‘Gst’, ‘1.0’)
gi.require_version(‘GstRtspServer’, ‘1.0’)
from gi.repository import GLib, Gst, GstRtspServer
from ctypes import *
import time
import sys
import math
import platform
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call

from common.FPS import PERF_DATA
import numpy as np
import pyds
import cv2
import os
import os.path
from os import path

perf_data = None
frame_count = {}
saved_count = {}
global PGIE_CLASS_ID_PERSON
PGIE_CLASS_ID_PERSON = 0
PGIE_CLASS_ID_BAG = 1
global PGIE_CLASS_ID_FACE
PGIE_CLASS_ID_FACE = 2

MAX_DISPLAY_LEN = 64

MUXER_OUTPUT_WIDTH = 720
MUXER_OUTPUT_HEIGHT = 576
MUXER_BATCH_TIMEOUT_USEC = 33000
TILED_OUTPUT_WIDTH = 720
TILED_OUTPUT_HEIGHT = 576
GST_CAPS_FEATURES_NVMM = “memory:NVMM”
pgie_classes_str = [“Person”, “Bag”, “Face”]

MIN_CONFIDENCE = 0.3
MAX_CONFIDENCE = 0.4

#tiler_sink_pad_buffer_probe will extract metadata received on tiler sink pad
#and update params for drawing rectangle, object information etc.
def tiler_sink_pad_buffer_probe(pad, info, u_data):
frame_number = 0
num_rects = 0
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer ")
return

# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))

l_frame = batch_meta.frame_meta_list
while l_frame is not None:
    try:
        # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
        # The casting is done by pyds.NvDsFrameMeta.cast()
        # The casting also keeps ownership of the underlying memory
        # in the C code, so the Python garbage collector will leave
        # it alone.
        frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
    except StopIteration:
        break

    frame_number = frame_meta.frame_num
    l_obj = frame_meta.obj_meta_list
    num_rects = frame_meta.num_obj_meta
    is_first_obj = True
    save_image = False
    obj_counter = {
        PGIE_CLASS_ID_PERSON: 0,
        PGIE_CLASS_ID_BAG: 0,
        PGIE_CLASS_ID_FACE: 0
    }
    while l_obj is not None:
        try:
            # Casting l_obj.data to pyds.NvDsObjectMeta
            obj_meta = pyds.NvDsObjectMeta.cast(l_obj.data)
        except StopIteration:
            break
        obj_counter[obj_meta.class_id] += 1

        #osd_rect_params =  pyds.NvOSD_RectParams.cast(obj_meta.rect_params)
         # Draw black patch to cover faces (class_id = 2), can change to other colors 
        if (obj_meta.class_id == PGIE_CLASS_ID_FACE):
            obj_meta.rect_params.border_width = 0
            obj_meta.rect_params.has_bg_color = 1
            obj_meta.rect_params.bg_color.red = 0.0
            obj_meta.rect_params.bg_color.green = 0.0
            obj_meta.rect_params.bg_color.blue = 0.0
            obj_meta.rect_params.bg_color.alpha = 0.2
        elif (obj_meta.class_id == PGIE_CLASS_ID_PERSON ) :
            obj_meta.rect_params.border_width = 0
            obj_meta.rect_params.has_bg_color = 1
            obj_meta.rect_params.bg_color.red = 0.0
            obj_meta.rect_params.bg_color.green = 0.0
            obj_meta.rect_params.bg_color.blue = 0.0
            obj_meta.rect_params.bg_color.alpha = 0.4

        # Periodically check for objects and save the annotated object to file.
        if saved_count["stream_{}".format(frame_meta.pad_index)] % 10 == 0 and obj_meta.class_id == PGIE_CLASS_ID_FACE :
            if is_first_obj:
                is_first_obj = False
                # Getting Image data using nvbufsurface
                # the input should be address of buffer and batch_id
                n_frame = pyds.get_nvds_buf_surface(hash(gst_buffer), frame_meta.batch_id)
                n_frame = crop_object(n_frame, obj_meta)
                # convert python array into numpy array format in the copy mode.
                frame_copy = np.array(n_frame, copy=True, order='C')
                # convert the array into cv2 default color format
                frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_RGBA2BGRA)
                if is_aarch64(): # If Jetson, since the buffer is mapped to CPU for retrieval, it must also be unmapped 
                    pyds.unmap_nvds_buf_surface(hash(gst_buffer), frame_meta.batch_id) # The unmap call should be made after operations with the original array are complete.
                                                                                        #  The original array cannot be accessed after this call.


            save_image = True

        try:
            l_obj = l_obj.next
        except StopIteration:
            break

    print("Frame Number=", frame_number, "Number of Objects=", num_rects, "Face_count=",
          obj_counter[PGIE_CLASS_ID_FACE], "Person_count=", obj_counter[PGIE_CLASS_ID_PERSON])
    # Update frame rate through this probe
    stream_index = "stream{0}".format(frame_meta.pad_index)
    global perf_data
    perf_data.update_fps(stream_index)
    if save_image:
        img_path = "{}/stream_{}/frame_{}.jpg".format(folder_name, frame_meta.pad_index, frame_number)
        cv2.imwrite(img_path, frame_copy)
    saved_count["stream_{}".format(frame_meta.pad_index)] += 1
    try:
        l_frame = l_frame.next
    except StopIteration:
        break

return Gst.PadProbeReturn.OK

def crop_object(image, obj_meta):
rect_params = obj_meta.rect_params
top = int(rect_params.top)
left = int(rect_params.left)
width = int(rect_params.width)
height = int(rect_params.height)
obj_name = pgie_classes_str[obj_meta.class_id]

crop_img = image[top:top+height, left:left+width]

return crop_img

def cb_newpad(decodebin, decoder_src_pad, data):
print(“In cb_newpad\n”)
caps = decoder_src_pad.get_current_caps()
gststruct = caps.get_structure(0)
gstname = gststruct.get_name()
source_bin = data
features = caps.get_features(0)

# Need to check if the pad created by the decodebin is for video and not
# audio.
if (gstname.find("video") != -1):
    # Link the decodebin pad only if decodebin has picked nvidia
    # decoder plugin nvdec_*. We do this by checking if the pad caps contain
    # NVMM memory features.
    if features.contains("memory:NVMM"):
        # Get the source bin ghost pad
        bin_ghost_pad = source_bin.get_static_pad("src")
        if not bin_ghost_pad.set_target(decoder_src_pad):
            sys.stderr.write("Failed to link decoder src pad to source bin ghost pad\n")
    else:
        sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n")

def decodebin_child_added(child_proxy, Object, name, user_data):
print(“Decodebin child added:”, name, “\n”)
if name.find(“decodebin”) != -1:
Object.connect(“child-added”, decodebin_child_added, user_data)
if not is_aarch64() and name.find(“nvv4l2decoder”) != -1:
# Use CUDA unified memory in the pipeline so frames
# can be easily accessed on CPU in Python.
Object.set_property(“cudadec-memtype”, 2)
# print(“Seting bufapi_version\n”)
# Object.set_property(“bufapi-version”, True)

def create_source_bin(index, uri):
print(“Creating source bin”)

# Create a source GstBin to abstract this bin's content from the rest of the
# pipeline
bin_name = "source-bin-%02d" % index
print(bin_name)
nbin = Gst.Bin.new(bin_name)
if not nbin:
    sys.stderr.write(" Unable to create source bin \n")

# Source element for reading from the uri.
# We will use decodebin and let it figure out the container format of the
# stream and the codec and plug the appropriate demux and decode plugins.
uri_decode_bin = Gst.ElementFactory.make("uridecodebin", "uri-decode-bin")
if not uri_decode_bin:
    sys.stderr.write(" Unable to create uri decode bin \n")
# We set the input uri to the source element
uri_decode_bin.set_property("uri", uri)
# Connect to the "pad-added" signal of the decodebin which generates a
# callback once a new pad for raw data has beed created by the decodebin
uri_decode_bin.connect("pad-added", cb_newpad, nbin)
uri_decode_bin.connect("child-added", decodebin_child_added, nbin)

# We need to create a ghost pad for the source bin which will act as a proxy
# for the video decoder src pad. The ghost pad will not have a target right
# now. Once the decode bin creates the video decoder and generates the
# cb_newpad callback, we will set the ghost pad target to the video decoder
# src pad.
Gst.Bin.add(nbin, uri_decode_bin)
bin_pad = nbin.add_pad(Gst.GhostPad.new_no_target("src", Gst.PadDirection.SRC))
if not bin_pad:
    sys.stderr.write(" Failed to add ghost pad in source bin \n")
    return None
return nbin

def main(uri_inputs,codec,bitrate ):
# Check input arguments
number_sources = len(uri_inputs)
global perf_data
perf_data = PERF_DATA(number_sources)

global folder_name
folder_name = "out_crops"

if path.exists(folder_name):
    sys.stderr.write("The output folder %s already exists. Please remove it first.\n" % folder_name)
    sys.exit(1)

os.mkdir(folder_name)
print("Frames will be saved in ", folder_name)
# Standard GStreamer initialization
Gst.init(None)

# Create gstreamer elements */
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()
is_live = False

if not pipeline:
    sys.stderr.write(" Unable to create Pipeline \n")
print("Creating streamux \n ")

# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
    sys.stderr.write(" Unable to create NvStreamMux \n")

pipeline.add(streammux)
for i in range(number_sources):
    os.mkdir(folder_name + "/stream_" + str(i))
    frame_count["stream_" + str(i)] = 0
    saved_count["stream_" + str(i)] = 0
    print("Creating source_bin ", i, " \n ")
    uri_name = uri_inputs[i]
    if uri_name.find("rtsp://") == 0:
        is_live = True
    source_bin = create_source_bin(i, uri_name)
    if not source_bin:
        sys.stderr.write("Unable to create source bin \n")
    pipeline.add(source_bin)
    padname = "sink_%u" % i
    sinkpad = streammux.get_request_pad(padname)
    if not sinkpad:
        sys.stderr.write("Unable to create sink pad bin \n")
    srcpad = source_bin.get_static_pad("src")
    if not srcpad:
        sys.stderr.write("Unable to create src pad bin \n")
    srcpad.link(sinkpad)
print("Creating Pgie \n ")
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not pgie:
    sys.stderr.write(" Unable to create pgie \n")
# Add nvvidconv1 and filter1 to convert the frames to RGBA
# which is easier to work with in Python.
print("Creating nvvidconv1 \n ")
nvvidconv1 = Gst.ElementFactory.make("nvvideoconvert", "convertor1")
if not nvvidconv1:
    sys.stderr.write(" Unable to create nvvidconv1 \n")
print("Creating filter1 \n ")
caps1 = Gst.Caps.from_string("video/x-raw(memory:NVMM), format=RGBA")
filter1 = Gst.ElementFactory.make("capsfilter", "filter1")
if not filter1:
    sys.stderr.write(" Unable to get the caps filter1 \n")
filter1.set_property("caps", caps1)
print("Creating tiler \n ")
tiler = Gst.ElementFactory.make("nvmultistreamtiler", "nvtiler")
if not tiler:
    sys.stderr.write(" Unable to create tiler \n")
print("Creating nvvidconv \n ")
nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
if not nvvidconv:
    sys.stderr.write(" Unable to create nvvidconv \n")
print("Creating nvosd \n ")
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
    sys.stderr.write(" Unable to create nvosd \n")
nvvidconv_postosd = Gst.ElementFactory.make("nvvideoconvert", "convertor_postosd")
if not nvvidconv_postosd:
    sys.stderr.write(" Unable to create nvvidconv_postosd \n")

# Create a caps filter
caps = Gst.ElementFactory.make("capsfilter", "filter")
caps.set_property("caps", Gst.Caps.from_string("video/x-raw(memory:NVMM), format=I420"))

# Make the encoder
if codec == "H264":
    encoder = Gst.ElementFactory.make("nvv4l2h264enc", "encoder")
    print("Creating H264 Encoder")
elif codec == "H265":
    encoder = Gst.ElementFactory.make("nvv4l2h265enc", "encoder")
    print("Creating H265 Encoder")
if not encoder:
    sys.stderr.write(" Unable to create encoder")
encoder.set_property('bitrate', bitrate)
if is_aarch64():
    encoder.set_property('preset-level', 1)
    encoder.set_property('insert-sps-pps', 1)
    #encoder.set_property('bufapi-version', 1)

# Make the payload-encode video into RTP packets
if codec == "H264":
    rtppay = Gst.ElementFactory.make("rtph264pay", "rtppay")
    print("Creating H264 rtppay")
elif codec == "H265":
    rtppay = Gst.ElementFactory.make("rtph265pay", "rtppay")
    print("Creating H265 rtppay")
if not rtppay:
    sys.stderr.write(" Unable to create rtppay")

# Make the UDP sink
updsink_port_num = 5400
sink = Gst.ElementFactory.make("udpsink", "udpsink")
if not sink:
    sys.stderr.write(" Unable to create udpsink")

sink.set_property('host', '224.224.255.255')
sink.set_property('port', updsink_port_num)
sink.set_property('async', False)
sink.set_property('sync', 1)

print("Playing file {} ".format(uri_inputs))

streammux.set_property('width', 1920)
streammux.set_property('height', 1080)
streammux.set_property('batch-size', number_sources)
streammux.set_property('batched-push-timeout', MUXER_BATCH_TIMEOUT_USEC)
pgie.set_property('config-file-path', "config_infer_primary_peoplenet.txt")
pgie_batch_size = pgie.get_property("batch-size")
if (pgie_batch_size != number_sources):
    print("WARNING: Overriding infer-config batch-size", pgie_batch_size, " with number of sources ",
          number_sources, " \n")
    pgie.set_property("batch-size", number_sources)
tiler_rows = int(math.sqrt(number_sources))
tiler_columns = int(math.ceil((1.0 * number_sources) / tiler_rows))
tiler.set_property("rows", tiler_rows)
tiler.set_property("columns", tiler_columns)
tiler.set_property("width", TILED_OUTPUT_WIDTH)
tiler.set_property("height", TILED_OUTPUT_HEIGHT)

if not is_aarch64():
    # Use CUDA unified memory in the pipeline so frames
    # can be easily accessed on CPU in Python.
    mem_type = int(pyds.NVBUF_MEM_CUDA_UNIFIED)
    streammux.set_property("nvbuf-memory-type", mem_type)
    nvvidconv.set_property("nvbuf-memory-type", mem_type)
    nvvidconv1.set_property("nvbuf-memory-type", mem_type)
    tiler.set_property("nvbuf-memory-type", mem_type)
    nvvidconv_postosd.set_property("nvbuf-memory-type", mem_type)

print("Adding elements to Pipeline \n")
pipeline.add(pgie)
pipeline.add(tiler)
pipeline.add(nvvidconv)
pipeline.add(filter1)
pipeline.add(nvvidconv1)
pipeline.add(nvosd)
pipeline.add(nvvidconv_postosd)
pipeline.add(caps)
pipeline.add(encoder)
pipeline.add(rtppay)
pipeline.add(sink)

print("Linking elements in the Pipeline \n")
streammux.link(pgie)
pgie.link(nvvidconv1)
nvvidconv1.link(filter1)
filter1.link(tiler)
tiler.link(nvvidconv)
nvvidconv.link(nvosd)
nvosd.link(nvvidconv_postosd)
nvvidconv_postosd.link(caps)
caps.link(encoder)
encoder.link(rtppay)
rtppay.link(sink)

# create an event loop and feed gstreamer bus mesages to it
loop = GLib.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect("message", bus_call, loop)

# Start streaming
rtsp_port_num = 8554

server = GstRtspServer.RTSPServer.new()
server.props.service = "%d" % rtsp_port_num
server.attach(None)

factory = GstRtspServer.RTSPMediaFactory.new()
factory.set_launch( "( udpsrc name=pay0 port=%d buffer-size=524288 caps=\"application/x-rtp, media=video, clock-rate=90000, encoding-name=(string)%s, payload=96 \" )" % (updsink_port_num, codec))
factory.set_shared(True)
server.get_mount_points().add_factory("/ds-test", factory)

print("\n *** DeepStream: Launched RTSP Streaming at rtsp://localhost:%d/ds-test ***\n\n" % rtsp_port_num)

tiler_sink_pad = tiler.get_static_pad("sink")
if not tiler_sink_pad:
    sys.stderr.write(" Unable to get sink pad \n")
else:
    tiler_sink_pad.add_probe(Gst.PadProbeType.BUFFER, tiler_sink_pad_buffer_probe, 0)
    # perf callback function to print fps every 5 sec
    GLib.timeout_add(5000, perf_data.perf_print_callback)


print("Starting pipeline \n")
# start play back and listed to events		
pipeline.set_state(Gst.State.PLAYING)
try:
    loop.run()
except:
    pass
# cleanup
print("Exiting app\n")
pipeline.set_state(Gst.State.NULL)

def parse_args():
parser = argparse.ArgumentParser(description='RTSP Output Sample Application Help ')

parser.add_argument("-i","--uri_inputs", metavar='N', type=str, nargs='+',
                help='Path to inputs URI e.g. rtsp:// ...  or file:// seperated by space')
				
parser.add_argument("-c", "--codec", default="H264",
              help="RTSP Streaming Codec H264/H265 , default=H264", choices=['H264','H265'])
parser.add_argument("-b", "--bitrate", default=4000000,
              help="Set the encoding bitrate ", type=int)
# Check input arguments
if len(sys.argv)==1:
    parser.print_help(sys.stderr)
    sys.exit(1)
args = parser.parse_args()
    
print("URI Inputs: " + str(args.uri_inputs ))

return args.uri_inputs , args.codec, args.bitrate

if name == ‘main’:
uri_inputs , out_codec, out_bitrate = parse_args()
sys.exit(main(uri_inputs, out_codec, out_bitrate ))

This is the code
i need to match the people from different video stream with same unique id
and i need to represent it in the output video stream

I think you have mentioned to use PGIE(people detector)+SGIE(face detect)+SGIE(Re-Identification) pipeline in Deepstream Multi Stream detection - Intelligent Video Analytics / DeepStream SDK - NVIDIA Developer Forums. Do you mean you don’t know how to construct such pipeline?

yes, i dont know how to get the unique id and match them with the other streams

There is no update from you for a period, assuming this is not an issue anymore. Hence we are closing this topic. If need further support, please open a new one. Thanks

This is the sample of get embedding vector(ReID) from the metadata after embedding model. deepstream_tao_apps/apps/tao_others/deepstream-mdx-perception-app at master · NVIDIA-AI-IOT/deepstream_tao_apps (github.com). Please be familiar with how to integrate Re-Identification model first. You need to parse the model output and add NVIDIA DeepStream SDK API Reference: NvDsEmbedding Struct Reference | NVIDIA Docs meta by yourself.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.