Description
I am trying to convert a SavedModel to a TensorRT model for inference.
Environment
TensorRT Version: 8.0.1.6
GPU Type: 128 core Maxwell
Nvidia Driver Version:
CUDA Version: 10.2.300
CUDNN Version: 8.2.1.32
Operating System + Version: Jetpack 4.6
Python Version (if applicable): 3.6.9
TensorFlow Version (if applicable): 2.4.0
PyTorch Version (if applicable):
Baremetal or Container (if container which image + tag):
Relevant Files
I am trying to convert a model by running this code:
import tensorflow as tf
gpu_devices = tf.config.experimental.list_physical_devices(‘GPU’)
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
from tensorflow.python.compiler.tensorrt import trt_convert as trt
import numpy as np
conversion_params = trt.DEFAULT_TRT_CONVERSION_PARAMS
conversion_params = conversion_params._replace(max_workspace_size_bytes=(300000000))
conversion_params = conversion_params._replace(precision_mode=“FP16”)
conversion_params = conversion_params._replace(
maximum_cached_engines=100)
encoder_model = trt.TrtGraphConverterV2(
input_saved_model_dir=‘/home/rohan/Desktop/original_models/encoder’,
conversion_params=conversion_params)
encoder_model.convert()
encoder_model.save(output_saved_model_dir=‘/home/rohan/Desktop/converted_models/encoder’)
Error:
2021-12-15 14:40:35.928076: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.2
2021-12-15 14:40:47.158202: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-12-15 14:40:47.196227: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
2021-12-15 14:40:47.236695: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] ARM64 does not support NUMA - returning NUMA node zero
2021-12-15 14:40:47.236944: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1747] Found device 0 with properties:
pciBusID: 0000:00:00.0 name: NVIDIA Tegra X1 computeCapability: 5.3
coreClock: 0.9216GHz coreCount: 1 deviceMemorySize: 3.86GiB deviceMemoryBandwidth: 194.55MiB/s
2021-12-15 14:40:47.237036: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.2
2021-12-15 14:40:47.361727: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.10
2021-12-15 14:40:47.361972: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.10
2021-12-15 14:40:47.416525: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2021-12-15 14:40:47.475564: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2021-12-15 14:40:47.529972: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2021-12-15 14:40:47.553797: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.10
2021-12-15 14:40:47.556260: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2021-12-15 14:40:47.556585: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] ARM64 does not support NUMA - returning NUMA node zero
2021-12-15 14:40:47.556900: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] ARM64 does not support NUMA - returning NUMA node zero
2021-12-15 14:40:47.556992: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1889] Adding visible gpu devices: 0
2021-12-15 14:40:47.584272: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library ‘libnvinfer.so.7’; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory
2021-12-15 14:40:47.584392: F tensorflow/compiler/tf2tensorrt/stub/nvinfer_stub.cc:49] getInferLibVersion symbol not found.
Aborted (core dumped)