Hi,
I am trying to train the CenterPose model on a custom dataset using this provided example TAO CenterPose notebook (tao_tutorials/notebooks/tao_launcher_starter_kit/centerpose/centerpose.ipynb at main · NVIDIA/tao_tutorials · GitHub).
Here are the steps I did before training:
- I created my custom dataset using the sample given file
./python.sh standalone_examples/replicator/pose_generation/pose_generation.py
(Pose Estimation Synthetic Data Generation — Omniverse IsaacSim latest documentation). I have my own.usd
files of the assets. This step was successful. - I made sure the dataset structure followed this reference: Data Annotation Format - NVIDIA Docs
- I set up the TAO toolkit following this article: TAO Toolkit Quick Start Guide - NVIDIA Docs
- I was able to run the notebook to train a model using Google Objectron dataset for the cereal box. This was successful.
- I tried to train the model using the same notebook, but on my custom dataset created in step 1. However, there was an error:
KeyError: 'AR_data'
.
Questions:
1. How can I annotate AR_data
to the .json
files when I create my custom datasets using pose_generation.py
? So far, I have not found a way to annotate AR_data
, please advise.
2. OR, is there a way I can modify the notebook such that AR_data
is not required?
3. OR, is there another away I can train CenterPose using my custom dataset?
This is an example of my dataset:
Corresponding .json
file:
{
"camera_data": {
"intrinsics": {
"fx": 3199.9999539287774,
"fy": 3199.9999539287774,
"cx": 960.0,
"cy": 600.0
},
"camera_view_matrix": [
[
1.0,
0.0,
0.0,
0.0
],
[
0.0,
-1.0,
-0.0,
0.0
],
[
0.0,
0.0,
-1.0,
0.0
],
[
-0.0,
0.0,
0.0,
1.0
]
],
"camera_projection_matrix": [
[
3.33333,
0.0,
0.0,
0.0
],
[
0.0,
5.33333,
0.0,
0.0
],
[
0.0,
0.0,
0.0,
-1.0
],
[
0.0,
0.0,
0.01,
0.0
]
],
"width": 1920,
"height": 1200
},
"keypoint_order": [
"Center",
"LDB",
"LDF",
"LUB",
"LUF",
"RDB",
"RDF",
"RUB",
"RUF"
],
"objects": [
{
"label": "fork_7500",
"prim_path": "/World/Fork_7500_0/Fork_7500",
"visibility": 0.997,
"location": [
-3.3173322677612305,
1.0951167345046997,
18.979755401611328
],
"quaternion_xyzw": [
-0.4627035697245575,
0.5088046860137205,
0.3824751094322646,
0.6170380772038369
],
"scale": [
2.6722641475656896,
3.3445917221702697,
0.6275341926171762
],
"keypoints_3d": [
[
-1.8345400139741974,
-0.3419354947783642,
-19.2678387661581
],
[
-3.1706720877570422,
-2.014231355863499,
-19.581605862466688
],
[
-3.859232924098995,
0.3991668015520579,
-19.445766987961576
],
[
-0.022099927041445255,
-1.081748639719478,
-20.18871318550983
],
[
-0.7106607633833981,
1.3316495176960792,
-20.052874311004715
],
[
-2.9584192645649967,
-2.0155205072528077,
-18.482803221311485
],
[
-3.6469801009069496,
0.39787765016274923,
-18.346964346806374
],
[
0.19015289615060027,
-1.0830377911087863,
-19.089910544354627
],
[
-0.4984079401913526,
1.3303603663067705,
-18.95407166984951
]
],
"projected_cuboid": [
[
655,
657
],
[
442,
929
],
[
325,
534
],
[
956,
771
],
[
847,
387
],
[
448,
949
],
[
324,
531
],
[
992,
782
],
[
876,
375
]
],
"truncation_ratio": 0.0
}
]
}
Thank you.