Sorry, this log is more representative (I did a lot of tests):
To run with multigpu, please change --gpus based on the number of available GPUs in your machine.
2023-10-24 07:56:30,922 [TAO Toolkit] [INFO] root 160: Registry: ['nvcr.io']
2023-10-24 07:56:31,015 [TAO Toolkit] [INFO] nvidia_tao_cli.components.instance_handler.local_instance 361: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:5.0.0-tf1.15.5
2023-10-24 07:56:31,081 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 275: Printing tty value True
Using TensorFlow backend.
2023-10-24 05:56:31.992379: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudart.so.12
2023-10-24 05:56:32,032 [TAO Toolkit] [WARNING] tensorflow 40: Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
2023-10-24 05:56:32,841 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2023-10-24 05:56:32,881 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2023-10-24 05:56:32,885 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2023-10-24 05:56:33,066 [TAO Toolkit] [WARNING] matplotlib 500: Matplotlib created a temporary config/cache directory at /tmp/matplotlib-dy5lq54_ because the default path (/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.
2023-10-24 05:56:33,348 [TAO Toolkit] [INFO] matplotlib.font_manager 1633: generated new fontManager
Using TensorFlow backend.
WARNING:tensorflow:Deprecation warnings have been disabled. Set TF_ENABLE_DEPRECATION_WARNINGS=1 to re-enable them.
WARNING:tensorflow:TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
2023-10-24 05:56:36,114 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use sklearn by default. This improves performance in some cases. To enable sklearn export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
2023-10-24 05:56:36,144 [TAO Toolkit] [WARNING] tensorflow 42: TensorFlow will not use Dask by default. This improves performance in some cases. To enable Dask export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
2023-10-24 05:56:36,147 [TAO Toolkit] [WARNING] tensorflow 43: TensorFlow will not use Pandas by default. This improves performance in some cases. To enable Pandas export the environment variable TF_ALLOW_IOLIBS=1.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/scripts/train.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
2023-10-24 05:56:37,901 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/scripts/train.py:181: The name tf.ConfigProto is deprecated. Please use tf.compat.v1.ConfigProto instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/scripts/train.py:184: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
2023-10-24 05:56:37,902 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/scripts/train.py:184: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
2023-10-24 05:56:38,058 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.common.logging.logging 197: Log file already exists at /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/status.json
2023-10-24 05:56:38,058 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.ssd.utils.spec_loader 179: Merging specification from /workspace/tao-experiments/ssd/specs/ssd_train_mobilenet_v2.txt
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
2023-10-24 05:56:38,061 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:153: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.
2023-10-24 05:56:38,068 [TAO Toolkit] [INFO] __main__ 275: Loading pretrained weights. This may take a while...
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
2023-10-24 05:56:38,069 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:517: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
2023-10-24 05:56:38,071 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:4138: The name tf.random_uniform is deprecated. Please use tf.random.uniform instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.
2023-10-24 05:56:38,081 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:1834: The name tf.nn.fused_batch_norm is deprecated. Please use tf.compat.v1.nn.fused_batch_norm instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:4185: The name tf.truncated_normal is deprecated. Please use tf.random.truncated_normal instead.
2023-10-24 05:56:38,702 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:4185: The name tf.truncated_normal is deprecated. Please use tf.random.truncated_normal instead.
Using DALI augmentation pipeline.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/box_coder/input_encoder.py:511: The name tf.log is deprecated. Please use tf.math.log instead.
2023-10-24 05:56:40,762 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/box_coder/input_encoder.py:511: The name tf.log is deprecated. Please use tf.math.log instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/third_party/keras/tensorflow_backend.py:199: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.
2023-10-24 05:56:43,396 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/third_party/keras/tensorflow_backend.py:199: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.
2023-10-24 05:56:43,598 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:174: The name tf.get_default_session is deprecated. Please use tf.compat.v1.get_default_session instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
2023-10-24 05:56:43,598 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:190: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.
2023-10-24 05:56:43,599 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:199: The name tf.is_variable_initialized is deprecated. Please use tf.compat.v1.is_variable_initialized instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.
2023-10-24 05:56:45,500 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:206: The name tf.variables_initializer is deprecated. Please use tf.compat.v1.variables_initializer instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
2023-10-24 05:56:47,645 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/optimizers.py:790: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead.
2023-10-24 05:56:48,186 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:986: The name tf.assign_add is deprecated. Please use tf.compat.v1.assign_add instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:973: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.
2023-10-24 05:56:48,380 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py:973: The name tf.assign is deprecated. Please use tf.compat.v1.assign instead.
Weights for those layers can not be loaded: ['re_lu_0']
STOP trainig now and check the pre-train model if this is not expected!
Layers that load weights from the pretrained model: ['conv1', 'bn_conv1', 'expanded_conv_depthwise', 'expanded_conv_depthwise_bn', 'expanded_conv_project', 'expanded_conv_project_bn', 'block_1_expand', 'block_1_expand_bn', 'block_1_depthwise', 'block_1_depthwise_bn', 'block_1_project', 'block_1_project_bn', 'block_2_expand', 'block_2_expand_bn', 'block_2_depthwise', 'block_2_depthwise_bn', 'block_2_project', 'block_2_projected_inputs', 'block_2_project_bn', 'block_3_expand', 'block_3_expand_bn', 'block_3_depthwise', 'block_3_depthwise_bn', 'block_3_project', 'block_3_project_bn', 'block_4_expand', 'block_4_expand_bn', 'block_4_depthwise', 'block_4_depthwise_bn', 'block_4_project', 'block_4_projected_inputs', 'block_4_project_bn', 'block_5_expand', 'block_5_expand_bn', 'block_5_depthwise', 'block_5_depthwise_bn', 'block_5_project', 'block_5_projected_inputs', 'block_5_project_bn', 'block_6_expand', 'block_6_expand_bn', 'block_6_depthwise', 'block_6_depthwise_bn', 'block_6_project', 'block_6_project_bn', 'block_7_expand', 'block_7_expand_bn', 'block_7_depthwise', 'block_7_depthwise_bn', 'block_7_project', 'block_7_projected_inputs', 'block_7_project_bn', 'block_8_expand', 'block_8_expand_bn', 'block_8_depthwise', 'block_8_depthwise_bn', 'block_8_project', 'block_8_projected_inputs', 'block_8_project_bn', 'block_9_expand', 'block_9_expand_bn', 'block_9_depthwise', 'block_9_depthwise_bn', 'block_9_project', 'block_9_projected_inputs', 'block_9_project_bn', 'block_10_expand', 'block_10_expand_bn', 'block_10_depthwise', 'block_10_depthwise_bn', 'block_10_project', 'block_10_project_bn', 'block_11_expand', 'block_11_expand_bn', 'block_11_depthwise', 'block_11_depthwise_bn', 'block_11_project', 'block_11_projected_inputs', 'block_11_project_bn', 'block_12_expand', 'block_12_expand_bn', 'block_12_depthwise', 'block_12_depthwise_bn', 'block_12_project', 'block_12_projected_inputs', 'block_12_project_bn']
Initialize optimizer
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/utils/tensor_utils.py:133: The name tf.local_variables_initializer is deprecated. Please use tf.compat.v1.local_variables_initializer instead.
2023-10-24 05:58:35,785 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/utils/tensor_utils.py:133: The name tf.local_variables_initializer is deprecated. Please use tf.compat.v1.local_variables_initializer instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/utils/tensor_utils.py:134: The name tf.tables_initializer is deprecated. Please use tf.compat.v1.tables_initializer instead.
2023-10-24 05:58:35,786 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/utils/tensor_utils.py:134: The name tf.tables_initializer is deprecated. Please use tf.compat.v1.tables_initializer instead.
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/utils/tensor_utils.py:135: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.
2023-10-24 05:58:35,786 [TAO Toolkit] [WARNING] tensorflow 137: From /usr/local/lib/python3.8/dist-packages/nvidia_tao_tf1/cv/ssd/utils/tensor_utils.py:135: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
Input (InputLayer) (16, 3, 300, 300) 0
__________________________________________________________________________________________________
conv1_pad (ZeroPadding2D) (16, 3, 302, 302) 0 Input[0][0]
__________________________________________________________________________________________________
conv1 (Conv2D) (16, 32, 150, 150) 864 conv1_pad[0][0]
__________________________________________________________________________________________________
bn_conv1 (BatchNormalization) (16, 32, 150, 150) 128 conv1[0][0]
__________________________________________________________________________________________________
re_lu_0 (ReLU) (16, 32, 150, 150) 0 bn_conv1[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_pad (Ze (16, 32, 152, 152) 0 re_lu_0[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise (Depthw (16, 32, 150, 150) 288 expanded_conv_depthwise_pad[0][0]
__________________________________________________________________________________________________
expanded_conv_depthwise_bn (Bat (16, 32, 150, 150) 128 expanded_conv_depthwise[0][0]
__________________________________________________________________________________________________
expanded_conv_relu (ReLU) (16, 32, 150, 150) 0 expanded_conv_depthwise_bn[0][0]
__________________________________________________________________________________________________
expanded_conv_project (Conv2D) (16, 16, 150, 150) 512 expanded_conv_relu[0][0]
__________________________________________________________________________________________________
expanded_conv_project_bn (Batch (16, 16, 150, 150) 64 expanded_conv_project[0][0]
__________________________________________________________________________________________________
block_1_expand (Conv2D) (16, 96, 150, 150) 1536 expanded_conv_project_bn[0][0]
__________________________________________________________________________________________________
block_1_expand_bn (BatchNormali (16, 96, 150, 150) 384 block_1_expand[0][0]
__________________________________________________________________________________________________
re_lu_2 (ReLU) (16, 96, 150, 150) 0 block_1_expand_bn[0][0]
__________________________________________________________________________________________________
block_1_depthwise_pad (ZeroPadd (16, 96, 152, 152) 0 re_lu_2[0][0]
__________________________________________________________________________________________________
block_1_depthwise (DepthwiseCon (16, 96, 75, 75) 864 block_1_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_1_depthwise_bn (BatchNorm (16, 96, 75, 75) 384 block_1_depthwise[0][0]
__________________________________________________________________________________________________
block_1_relu (ReLU) (16, 96, 75, 75) 0 block_1_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_1_project (Conv2D) (16, 24, 75, 75) 2304 block_1_relu[0][0]
__________________________________________________________________________________________________
block_1_project_bn (BatchNormal (16, 24, 75, 75) 96 block_1_project[0][0]
__________________________________________________________________________________________________
block_2_expand (Conv2D) (16, 144, 75, 75) 3456 block_1_project_bn[0][0]
__________________________________________________________________________________________________
block_2_expand_bn (BatchNormali (16, 144, 75, 75) 576 block_2_expand[0][0]
__________________________________________________________________________________________________
re_lu_3 (ReLU) (16, 144, 75, 75) 0 block_2_expand_bn[0][0]
__________________________________________________________________________________________________
block_2_depthwise_pad (ZeroPadd (16, 144, 77, 77) 0 re_lu_3[0][0]
__________________________________________________________________________________________________
block_2_depthwise (DepthwiseCon (16, 144, 75, 75) 1296 block_2_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_2_depthwise_bn (BatchNorm (16, 144, 75, 75) 576 block_2_depthwise[0][0]
__________________________________________________________________________________________________
block_2_relu (ReLU) (16, 144, 75, 75) 0 block_2_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_2_project (Conv2D) (16, 24, 75, 75) 3456 block_2_relu[0][0]
__________________________________________________________________________________________________
block_2_projected_inputs (Conv2 (16, 24, 75, 75) 576 block_1_project_bn[0][0]
__________________________________________________________________________________________________
block_2_project_bn (BatchNormal (16, 24, 75, 75) 96 block_2_project[0][0]
__________________________________________________________________________________________________
block_2_add (Add) (16, 24, 75, 75) 0 block_2_projected_inputs[0][0]
block_2_project_bn[0][0]
__________________________________________________________________________________________________
block_3_expand (Conv2D) (16, 144, 75, 75) 3456 block_2_add[0][0]
__________________________________________________________________________________________________
block_3_expand_bn (BatchNormali (16, 144, 75, 75) 576 block_3_expand[0][0]
__________________________________________________________________________________________________
re_lu_4 (ReLU) (16, 144, 75, 75) 0 block_3_expand_bn[0][0]
__________________________________________________________________________________________________
block_3_depthwise_pad (ZeroPadd (16, 144, 77, 77) 0 re_lu_4[0][0]
__________________________________________________________________________________________________
block_3_depthwise (DepthwiseCon (16, 144, 38, 38) 1296 block_3_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_3_depthwise_bn (BatchNorm (16, 144, 38, 38) 576 block_3_depthwise[0][0]
__________________________________________________________________________________________________
block_3_relu (ReLU) (16, 144, 38, 38) 0 block_3_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_3_project (Conv2D) (16, 32, 38, 38) 4608 block_3_relu[0][0]
__________________________________________________________________________________________________
block_3_project_bn (BatchNormal (16, 32, 38, 38) 128 block_3_project[0][0]
__________________________________________________________________________________________________
block_4_expand (Conv2D) (16, 192, 38, 38) 6144 block_3_project_bn[0][0]
__________________________________________________________________________________________________
block_4_expand_bn (BatchNormali (16, 192, 38, 38) 768 block_4_expand[0][0]
__________________________________________________________________________________________________
re_lu_5 (ReLU) (16, 192, 38, 38) 0 block_4_expand_bn[0][0]
__________________________________________________________________________________________________
block_4_depthwise_pad (ZeroPadd (16, 192, 40, 40) 0 re_lu_5[0][0]
__________________________________________________________________________________________________
block_4_depthwise (DepthwiseCon (16, 192, 38, 38) 1728 block_4_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_4_depthwise_bn (BatchNorm (16, 192, 38, 38) 768 block_4_depthwise[0][0]
__________________________________________________________________________________________________
block_4_relu (ReLU) (16, 192, 38, 38) 0 block_4_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_4_project (Conv2D) (16, 32, 38, 38) 6144 block_4_relu[0][0]
__________________________________________________________________________________________________
block_4_projected_inputs (Conv2 (16, 32, 38, 38) 1024 block_3_project_bn[0][0]
__________________________________________________________________________________________________
block_4_project_bn (BatchNormal (16, 32, 38, 38) 128 block_4_project[0][0]
__________________________________________________________________________________________________
block_4_add (Add) (16, 32, 38, 38) 0 block_4_projected_inputs[0][0]
block_4_project_bn[0][0]
__________________________________________________________________________________________________
block_5_expand (Conv2D) (16, 192, 38, 38) 6144 block_4_add[0][0]
__________________________________________________________________________________________________
block_5_expand_bn (BatchNormali (16, 192, 38, 38) 768 block_5_expand[0][0]
__________________________________________________________________________________________________
re_lu_6 (ReLU) (16, 192, 38, 38) 0 block_5_expand_bn[0][0]
__________________________________________________________________________________________________
block_5_depthwise_pad (ZeroPadd (16, 192, 40, 40) 0 re_lu_6[0][0]
__________________________________________________________________________________________________
block_5_depthwise (DepthwiseCon (16, 192, 38, 38) 1728 block_5_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_5_depthwise_bn (BatchNorm (16, 192, 38, 38) 768 block_5_depthwise[0][0]
__________________________________________________________________________________________________
block_5_relu (ReLU) (16, 192, 38, 38) 0 block_5_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_5_project (Conv2D) (16, 32, 38, 38) 6144 block_5_relu[0][0]
__________________________________________________________________________________________________
block_5_projected_inputs (Conv2 (16, 32, 38, 38) 1024 block_4_add[0][0]
__________________________________________________________________________________________________
block_5_project_bn (BatchNormal (16, 32, 38, 38) 128 block_5_project[0][0]
__________________________________________________________________________________________________
block_5_add (Add) (16, 32, 38, 38) 0 block_5_projected_inputs[0][0]
block_5_project_bn[0][0]
__________________________________________________________________________________________________
block_6_expand (Conv2D) (16, 192, 38, 38) 6144 block_5_add[0][0]
__________________________________________________________________________________________________
block_6_expand_bn (BatchNormali (16, 192, 38, 38) 768 block_6_expand[0][0]
__________________________________________________________________________________________________
re_lu_7 (ReLU) (16, 192, 38, 38) 0 block_6_expand_bn[0][0]
__________________________________________________________________________________________________
block_6_depthwise_pad (ZeroPadd (16, 192, 40, 40) 0 re_lu_7[0][0]
__________________________________________________________________________________________________
block_6_depthwise (DepthwiseCon (16, 192, 19, 19) 1728 block_6_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_6_depthwise_bn (BatchNorm (16, 192, 19, 19) 768 block_6_depthwise[0][0]
__________________________________________________________________________________________________
block_6_relu (ReLU) (16, 192, 19, 19) 0 block_6_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_6_project (Conv2D) (16, 64, 19, 19) 12288 block_6_relu[0][0]
__________________________________________________________________________________________________
block_6_project_bn (BatchNormal (16, 64, 19, 19) 256 block_6_project[0][0]
__________________________________________________________________________________________________
block_7_expand (Conv2D) (16, 384, 19, 19) 24576 block_6_project_bn[0][0]
__________________________________________________________________________________________________
block_7_expand_bn (BatchNormali (16, 384, 19, 19) 1536 block_7_expand[0][0]
__________________________________________________________________________________________________
re_lu_8 (ReLU) (16, 384, 19, 19) 0 block_7_expand_bn[0][0]
__________________________________________________________________________________________________
block_7_depthwise_pad (ZeroPadd (16, 384, 21, 21) 0 re_lu_8[0][0]
__________________________________________________________________________________________________
block_7_depthwise (DepthwiseCon (16, 384, 19, 19) 3456 block_7_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_7_depthwise_bn (BatchNorm (16, 384, 19, 19) 1536 block_7_depthwise[0][0]
__________________________________________________________________________________________________
block_7_relu (ReLU) (16, 384, 19, 19) 0 block_7_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_7_project (Conv2D) (16, 64, 19, 19) 24576 block_7_relu[0][0]
__________________________________________________________________________________________________
block_7_projected_inputs (Conv2 (16, 64, 19, 19) 4096 block_6_project_bn[0][0]
__________________________________________________________________________________________________
block_7_project_bn (BatchNormal (16, 64, 19, 19) 256 block_7_project[0][0]
__________________________________________________________________________________________________
block_7_add (Add) (16, 64, 19, 19) 0 block_7_projected_inputs[0][0]
block_7_project_bn[0][0]
__________________________________________________________________________________________________
block_8_expand (Conv2D) (16, 384, 19, 19) 24576 block_7_add[0][0]
__________________________________________________________________________________________________
block_8_expand_bn (BatchNormali (16, 384, 19, 19) 1536 block_8_expand[0][0]
__________________________________________________________________________________________________
re_lu_9 (ReLU) (16, 384, 19, 19) 0 block_8_expand_bn[0][0]
__________________________________________________________________________________________________
block_8_depthwise_pad (ZeroPadd (16, 384, 21, 21) 0 re_lu_9[0][0]
__________________________________________________________________________________________________
block_8_depthwise (DepthwiseCon (16, 384, 19, 19) 3456 block_8_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_8_depthwise_bn (BatchNorm (16, 384, 19, 19) 1536 block_8_depthwise[0][0]
__________________________________________________________________________________________________
block_8_relu (ReLU) (16, 384, 19, 19) 0 block_8_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_8_project (Conv2D) (16, 64, 19, 19) 24576 block_8_relu[0][0]
__________________________________________________________________________________________________
block_8_projected_inputs (Conv2 (16, 64, 19, 19) 4096 block_7_add[0][0]
__________________________________________________________________________________________________
block_8_project_bn (BatchNormal (16, 64, 19, 19) 256 block_8_project[0][0]
__________________________________________________________________________________________________
block_8_add (Add) (16, 64, 19, 19) 0 block_8_projected_inputs[0][0]
block_8_project_bn[0][0]
__________________________________________________________________________________________________
block_9_expand (Conv2D) (16, 384, 19, 19) 24576 block_8_add[0][0]
__________________________________________________________________________________________________
block_9_expand_bn (BatchNormali (16, 384, 19, 19) 1536 block_9_expand[0][0]
__________________________________________________________________________________________________
re_lu_10 (ReLU) (16, 384, 19, 19) 0 block_9_expand_bn[0][0]
__________________________________________________________________________________________________
block_9_depthwise_pad (ZeroPadd (16, 384, 21, 21) 0 re_lu_10[0][0]
__________________________________________________________________________________________________
block_9_depthwise (DepthwiseCon (16, 384, 19, 19) 3456 block_9_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_9_depthwise_bn (BatchNorm (16, 384, 19, 19) 1536 block_9_depthwise[0][0]
__________________________________________________________________________________________________
block_9_relu (ReLU) (16, 384, 19, 19) 0 block_9_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_9_project (Conv2D) (16, 64, 19, 19) 24576 block_9_relu[0][0]
__________________________________________________________________________________________________
block_9_projected_inputs (Conv2 (16, 64, 19, 19) 4096 block_8_add[0][0]
__________________________________________________________________________________________________
block_9_project_bn (BatchNormal (16, 64, 19, 19) 256 block_9_project[0][0]
__________________________________________________________________________________________________
block_9_add (Add) (16, 64, 19, 19) 0 block_9_projected_inputs[0][0]
block_9_project_bn[0][0]
__________________________________________________________________________________________________
block_10_expand (Conv2D) (16, 384, 19, 19) 24576 block_9_add[0][0]
__________________________________________________________________________________________________
block_10_expand_bn (BatchNormal (16, 384, 19, 19) 1536 block_10_expand[0][0]
__________________________________________________________________________________________________
re_lu_11 (ReLU) (16, 384, 19, 19) 0 block_10_expand_bn[0][0]
__________________________________________________________________________________________________
block_10_depthwise_pad (ZeroPad (16, 384, 21, 21) 0 re_lu_11[0][0]
__________________________________________________________________________________________________
block_10_depthwise (DepthwiseCo (16, 384, 19, 19) 3456 block_10_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_10_depthwise_bn (BatchNor (16, 384, 19, 19) 1536 block_10_depthwise[0][0]
__________________________________________________________________________________________________
block_10_relu (ReLU) (16, 384, 19, 19) 0 block_10_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_10_project (Conv2D) (16, 96, 19, 19) 36864 block_10_relu[0][0]
__________________________________________________________________________________________________
block_10_project_bn (BatchNorma (16, 96, 19, 19) 384 block_10_project[0][0]
__________________________________________________________________________________________________
block_11_expand (Conv2D) (16, 576, 19, 19) 55296 block_10_project_bn[0][0]
__________________________________________________________________________________________________
block_11_expand_bn (BatchNormal (16, 576, 19, 19) 2304 block_11_expand[0][0]
__________________________________________________________________________________________________
re_lu_12 (ReLU) (16, 576, 19, 19) 0 block_11_expand_bn[0][0]
__________________________________________________________________________________________________
block_11_depthwise_pad (ZeroPad (16, 576, 21, 21) 0 re_lu_12[0][0]
__________________________________________________________________________________________________
block_11_depthwise (DepthwiseCo (16, 576, 19, 19) 5184 block_11_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_11_depthwise_bn (BatchNor (16, 576, 19, 19) 2304 block_11_depthwise[0][0]
__________________________________________________________________________________________________
block_11_relu (ReLU) (16, 576, 19, 19) 0 block_11_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_11_project (Conv2D) (16, 96, 19, 19) 55296 block_11_relu[0][0]
__________________________________________________________________________________________________
block_11_projected_inputs (Conv (16, 96, 19, 19) 9216 block_10_project_bn[0][0]
__________________________________________________________________________________________________
block_11_project_bn (BatchNorma (16, 96, 19, 19) 384 block_11_project[0][0]
__________________________________________________________________________________________________
block_11_add (Add) (16, 96, 19, 19) 0 block_11_projected_inputs[0][0]
block_11_project_bn[0][0]
__________________________________________________________________________________________________
block_12_expand (Conv2D) (16, 576, 19, 19) 55296 block_11_add[0][0]
__________________________________________________________________________________________________
block_12_expand_bn (BatchNormal (16, 576, 19, 19) 2304 block_12_expand[0][0]
__________________________________________________________________________________________________
re_lu_13 (ReLU) (16, 576, 19, 19) 0 block_12_expand_bn[0][0]
__________________________________________________________________________________________________
block_12_depthwise_pad (ZeroPad (16, 576, 21, 21) 0 re_lu_13[0][0]
__________________________________________________________________________________________________
block_12_depthwise (DepthwiseCo (16, 576, 19, 19) 5184 block_12_depthwise_pad[0][0]
__________________________________________________________________________________________________
block_12_depthwise_bn (BatchNor (16, 576, 19, 19) 2304 block_12_depthwise[0][0]
__________________________________________________________________________________________________
block_12_relu (ReLU) (16, 576, 19, 19) 0 block_12_depthwise_bn[0][0]
__________________________________________________________________________________________________
block_12_project (Conv2D) (16, 96, 19, 19) 55296 block_12_relu[0][0]
__________________________________________________________________________________________________
block_12_projected_inputs (Conv (16, 96, 19, 19) 9216 block_11_add[0][0]
__________________________________________________________________________________________________
block_12_project_bn (BatchNorma (16, 96, 19, 19) 384 block_12_project[0][0]
__________________________________________________________________________________________________
block_12_add (Add) (16, 96, 19, 19) 0 block_12_projected_inputs[0][0]
block_12_project_bn[0][0]
__________________________________________________________________________________________________
ssd_expand_block_1_conv_0 (Conv (16, 64, 19, 19) 6208 block_12_add[0][0]
__________________________________________________________________________________________________
ssd_expand_block_1_relu_0 (ReLU (16, 64, 19, 19) 0 ssd_expand_block_1_conv_0[0][0]
__________________________________________________________________________________________________
ssd_expand_block_1_conv_1 (Conv (16, 128, 10, 10) 73728 ssd_expand_block_1_relu_0[0][0]
__________________________________________________________________________________________________
ssd_expand_block_1_bn_1 (BatchN (16, 128, 10, 10) 512 ssd_expand_block_1_conv_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_1_relu_1 (ReLU (16, 128, 10, 10) 0 ssd_expand_block_1_bn_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_2_conv_0 (Conv (16, 64, 10, 10) 8256 ssd_expand_block_1_relu_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_2_relu_0 (ReLU (16, 64, 10, 10) 0 ssd_expand_block_2_conv_0[0][0]
__________________________________________________________________________________________________
ssd_expand_block_2_conv_1 (Conv (16, 128, 5, 5) 73728 ssd_expand_block_2_relu_0[0][0]
__________________________________________________________________________________________________
ssd_expand_block_2_bn_1 (BatchN (16, 128, 5, 5) 512 ssd_expand_block_2_conv_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_2_relu_1 (ReLU (16, 128, 5, 5) 0 ssd_expand_block_2_bn_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_3_conv_0 (Conv (16, 64, 5, 5) 8256 ssd_expand_block_2_relu_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_3_relu_0 (ReLU (16, 64, 5, 5) 0 ssd_expand_block_3_conv_0[0][0]
__________________________________________________________________________________________________
ssd_expand_block_3_conv_1 (Conv (16, 128, 3, 3) 73728 ssd_expand_block_3_relu_0[0][0]
__________________________________________________________________________________________________
ssd_expand_block_3_bn_1 (BatchN (16, 128, 3, 3) 512 ssd_expand_block_3_conv_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_3_relu_1 (ReLU (16, 128, 3, 3) 0 ssd_expand_block_3_bn_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_4_conv_0 (Conv (16, 64, 3, 3) 8256 ssd_expand_block_3_relu_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_4_relu_0 (ReLU (16, 64, 3, 3) 0 ssd_expand_block_4_conv_0[0][0]
__________________________________________________________________________________________________
ssd_expand_block_4_conv_1 (Conv (16, 128, 2, 2) 73728 ssd_expand_block_4_relu_0[0][0]
__________________________________________________________________________________________________
ssd_expand_block_4_bn_1 (BatchN (16, 128, 2, 2) 512 ssd_expand_block_4_conv_1[0][0]
__________________________________________________________________________________________________
ssd_expand_block_4_relu_1 (ReLU (16, 128, 2, 2) 0 ssd_expand_block_4_bn_1[0][0]
__________________________________________________________________________________________________
ssd_conf_0 (Conv2D) (16, 24, 38, 38) 41496 re_lu_7[0][0]
__________________________________________________________________________________________________
ssd_conf_1 (Conv2D) (16, 24, 19, 19) 20760 block_12_add[0][0]
__________________________________________________________________________________________________
ssd_conf_2 (Conv2D) (16, 24, 10, 10) 27672 ssd_expand_block_1_relu_1[0][0]
__________________________________________________________________________________________________
ssd_conf_3 (Conv2D) (16, 24, 5, 5) 27672 ssd_expand_block_2_relu_1[0][0]
__________________________________________________________________________________________________
ssd_conf_4 (Conv2D) (16, 24, 3, 3) 27672 ssd_expand_block_3_relu_1[0][0]
__________________________________________________________________________________________________
ssd_conf_5 (Conv2D) (16, 24, 2, 2) 27672 ssd_expand_block_4_relu_1[0][0]
__________________________________________________________________________________________________
permute_13 (Permute) (16, 38, 38, 24) 0 ssd_conf_0[0][0]
__________________________________________________________________________________________________
permute_14 (Permute) (16, 19, 19, 24) 0 ssd_conf_1[0][0]
__________________________________________________________________________________________________
permute_15 (Permute) (16, 10, 10, 24) 0 ssd_conf_2[0][0]
__________________________________________________________________________________________________
permute_16 (Permute) (16, 5, 5, 24) 0 ssd_conf_3[0][0]
__________________________________________________________________________________________________
permute_17 (Permute) (16, 3, 3, 24) 0 ssd_conf_4[0][0]
__________________________________________________________________________________________________
permute_18 (Permute) (16, 2, 2, 24) 0 ssd_conf_5[0][0]
__________________________________________________________________________________________________
conf_reshape_0 (Reshape) (16, 8664, 1, 4) 0 permute_13[0][0]
__________________________________________________________________________________________________
conf_reshape_1 (Reshape) (16, 2166, 1, 4) 0 permute_14[0][0]
__________________________________________________________________________________________________
conf_reshape_2 (Reshape) (16, 600, 1, 4) 0 permute_15[0][0]
__________________________________________________________________________________________________
conf_reshape_3 (Reshape) (16, 150, 1, 4) 0 permute_16[0][0]
__________________________________________________________________________________________________
conf_reshape_4 (Reshape) (16, 54, 1, 4) 0 permute_17[0][0]
__________________________________________________________________________________________________
conf_reshape_5 (Reshape) (16, 24, 1, 4) 0 permute_18[0][0]
__________________________________________________________________________________________________
mbox_conf (Concatenate) (16, 11658, 1, 4) 0 conf_reshape_0[0][0]
conf_reshape_1[0][0]
conf_reshape_2[0][0]
conf_reshape_3[0][0]
conf_reshape_4[0][0]
conf_reshape_5[0][0]
__________________________________________________________________________________________________
ssd_loc_0 (Conv2D) (16, 24, 38, 38) 41496 re_lu_7[0][0]
__________________________________________________________________________________________________
ssd_loc_1 (Conv2D) (16, 24, 19, 19) 20760 block_12_add[0][0]
__________________________________________________________________________________________________
ssd_loc_2 (Conv2D) (16, 24, 10, 10) 27672 ssd_expand_block_1_relu_1[0][0]
__________________________________________________________________________________________________
ssd_loc_3 (Conv2D) (16, 24, 5, 5) 27672 ssd_expand_block_2_relu_1[0][0]
__________________________________________________________________________________________________
ssd_loc_4 (Conv2D) (16, 24, 3, 3) 27672 ssd_expand_block_3_relu_1[0][0]
__________________________________________________________________________________________________
ssd_loc_5 (Conv2D) (16, 24, 2, 2) 27672 ssd_expand_block_4_relu_1[0][0]
__________________________________________________________________________________________________
before_softmax_permute (Permute (16, 4, 1, 11658) 0 mbox_conf[0][0]
__________________________________________________________________________________________________
permute_19 (Permute) (16, 38, 38, 24) 0 ssd_loc_0[0][0]
__________________________________________________________________________________________________
permute_20 (Permute) (16, 19, 19, 24) 0 ssd_loc_1[0][0]
__________________________________________________________________________________________________
permute_21 (Permute) (16, 10, 10, 24) 0 ssd_loc_2[0][0]
__________________________________________________________________________________________________
permute_22 (Permute) (16, 5, 5, 24) 0 ssd_loc_3[0][0]
__________________________________________________________________________________________________
permute_23 (Permute) (16, 3, 3, 24) 0 ssd_loc_4[0][0]
__________________________________________________________________________________________________
permute_24 (Permute) (16, 2, 2, 24) 0 ssd_loc_5[0][0]
__________________________________________________________________________________________________
ssd_anchor_0 (AnchorBoxes) (16, 1444, 6, 8) 0 ssd_loc_0[0][0]
__________________________________________________________________________________________________
ssd_anchor_1 (AnchorBoxes) (16, 361, 6, 8) 0 ssd_loc_1[0][0]
__________________________________________________________________________________________________
ssd_anchor_2 (AnchorBoxes) (16, 100, 6, 8) 0 ssd_loc_2[0][0]
__________________________________________________________________________________________________
ssd_anchor_3 (AnchorBoxes) (16, 25, 6, 8) 0 ssd_loc_3[0][0]
__________________________________________________________________________________________________
ssd_anchor_4 (AnchorBoxes) (16, 9, 6, 8) 0 ssd_loc_4[0][0]
__________________________________________________________________________________________________
ssd_anchor_5 (AnchorBoxes) (16, 4, 6, 8) 0 ssd_loc_5[0][0]
__________________________________________________________________________________________________
mbox_conf_softmax_ (Softmax) (16, 4, 1, 11658) 0 before_softmax_permute[0][0]
__________________________________________________________________________________________________
loc_reshape_0 (Reshape) (16, 8664, 1, 4) 0 permute_19[0][0]
__________________________________________________________________________________________________
loc_reshape_1 (Reshape) (16, 2166, 1, 4) 0 permute_20[0][0]
__________________________________________________________________________________________________
loc_reshape_2 (Reshape) (16, 600, 1, 4) 0 permute_21[0][0]
__________________________________________________________________________________________________
loc_reshape_3 (Reshape) (16, 150, 1, 4) 0 permute_22[0][0]
__________________________________________________________________________________________________
loc_reshape_4 (Reshape) (16, 54, 1, 4) 0 permute_23[0][0]
__________________________________________________________________________________________________
loc_reshape_5 (Reshape) (16, 24, 1, 4) 0 permute_24[0][0]
__________________________________________________________________________________________________
anchor_reshape_0 (Reshape) (16, 8664, 1, 8) 0 ssd_anchor_0[0][0]
__________________________________________________________________________________________________
anchor_reshape_1 (Reshape) (16, 2166, 1, 8) 0 ssd_anchor_1[0][0]
__________________________________________________________________________________________________
anchor_reshape_2 (Reshape) (16, 600, 1, 8) 0 ssd_anchor_2[0][0]
__________________________________________________________________________________________________
anchor_reshape_3 (Reshape) (16, 150, 1, 8) 0 ssd_anchor_3[0][0]
__________________________________________________________________________________________________
anchor_reshape_4 (Reshape) (16, 54, 1, 8) 0 ssd_anchor_4[0][0]
__________________________________________________________________________________________________
anchor_reshape_5 (Reshape) (16, 24, 1, 8) 0 ssd_anchor_5[0][0]
__________________________________________________________________________________________________
mbox_conf_softmax (Permute) (16, 11658, 1, 4) 0 mbox_conf_softmax_[0][0]
__________________________________________________________________________________________________
mbox_loc (Concatenate) (16, 11658, 1, 4) 0 loc_reshape_0[0][0]
loc_reshape_1[0][0]
loc_reshape_2[0][0]
loc_reshape_3[0][0]
loc_reshape_4[0][0]
loc_reshape_5[0][0]
__________________________________________________________________________________________________
mbox_priorbox (Concatenate) (16, 11658, 1, 8) 0 anchor_reshape_0[0][0]
anchor_reshape_1[0][0]
anchor_reshape_2[0][0]
anchor_reshape_3[0][0]
anchor_reshape_4[0][0]
anchor_reshape_5[0][0]
__________________________________________________________________________________________________
concatenate_2 (Concatenate) (16, 11658, 1, 16) 0 mbox_conf_softmax[0][0]
mbox_loc[0][0]
mbox_priorbox[0][0]
__________________________________________________________________________________________________
ssd_predictions (Reshape) (16, 11658, 16) 0 concatenate_2[0][0]
==================================================================================================
Total params: 1,265,824
Trainable params: 1,247,808
Non-trainable params: 18,016
__________________________________________________________________________________________________
2023-10-24 05:58:36,455 [TAO Toolkit] [INFO] __main__ 356: Number of images in the training dataset: 6733
2023-10-24 05:58:36,455 [TAO Toolkit] [INFO] __main__ 358: Number of images in the validation dataset: 748
2023-10-24 05:58:37,017 [TAO Toolkit] [INFO] nvidia_tao_tf1.cv.common.logging.logging 197: Log file already exists at /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/status.json
2023-10-24 05:58:41,686 [TAO Toolkit] [INFO] root 2102: Starting Training Loop.
Epoch 1/80
2/421 [..............................] - ETA: 49:53 - loss: 112.3073 /usr/local/lib/python3.8/dist-packages/keras/callbacks.py:120: UserWarning: Method on_batch_end() is slow compared to the batch update (2.125494). Check your callbacks.
warnings.warn('Method on_batch_end() is slow compared '
421/421 [==============================] - 49s 116ms/step - loss: 43.1540
[1698127174.677111] [290444ac5bd1:240 :f] vfs_fuse.c:424 UCX WARN failed to connect to vfs socket '': Invalid argument
Epoch 00001: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_001.hdf5
2023-10-24 05:59:47,440 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 2/80
421/421 [==============================] - 35s 83ms/step - loss: 12.0487
Epoch 00002: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_002.hdf5
2023-10-24 06:00:23,925 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 3/80
421/421 [==============================] - 35s 82ms/step - loss: 8.7104
Epoch 00003: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_003.hdf5
2023-10-24 06:00:58,823 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 4/80
421/421 [==============================] - 35s 82ms/step - loss: 7.8193
Epoch 00004: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_004.hdf5
2023-10-24 06:01:33,848 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 5/80
421/421 [==============================] - 34s 82ms/step - loss: 7.3644
Epoch 00005: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_005.hdf5
2023-10-24 06:02:08,564 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 6/80
421/421 [==============================] - 34s 82ms/step - loss: 7.0480
Epoch 00006: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_006.hdf5
2023-10-24 06:02:43,243 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 7/80
421/421 [==============================] - 35s 82ms/step - loss: 6.7710
Epoch 00007: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_007.hdf5
2023-10-24 06:03:18,095 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 8/80
421/421 [==============================] - 34s 82ms/step - loss: 12.0559
Epoch 00008: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_008.hdf5
2023-10-24 06:03:52,815 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 9/80
421/421 [==============================] - 35s 82ms/step - loss: 17.2156
Epoch 00009: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_009.hdf5
2023-10-24 06:04:27,644 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 10/80
421/421 [==============================] - 35s 82ms/step - loss: 17.2336
Epoch 00010: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_010.hdf5
Producing predictions: 100%|████████████████████| 47/47 [00:10<00:00, 4.65it/s]
2023-10-24 06:05:15,089 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,206 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,295 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,495 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,540 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,572 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,796 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,847 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,864 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,865 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,931 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:15,937 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:16,172 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:16,267 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:16,518 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:16,523 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:16,558 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:16,621 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:16,633 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:16,666 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:16,860 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,153 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,220 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,314 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,320 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,495 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,500 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,583 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,634 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,676 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,789 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,799 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,912 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:17,967 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,000 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,027 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,136 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,212 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,263 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,336 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,347 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,350 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,372 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,378 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,419 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,424 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,458 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,662 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,759 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,764 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,812 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,846 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:18,962 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,037 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,085 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,093 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,130 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,267 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,275 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,293 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,316 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,324 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
2023-10-24 06:05:19,332 [TAO Toolkit] [WARNING] nvidia_tao_tf1.cv.common.evaluator.ap_evaluator 124: Got label marked as difficult(occlusion > 0), please set occlusion field in KITTI label to 0, if you want to include it in mAP calculation during validation/evaluation.
Start to calculate AP for each class
*******************************
car AP 0.0001
cyclist AP 0.0
pedestrian AP 0.0
mAP 3e-05
*******************************
Validation loss: 13606.16414605615
2023-10-24 06:05:19,699 [TAO Toolkit] [INFO] root 2102: Evaluation metrics generated.
2023-10-24 06:05:19,702 [TAO Toolkit] [INFO] root 2102: Training loop in progress
Epoch 11/80
50/421 [==>...........................] - ETA: 32s - loss: nan Batch 49: Invalid loss, terminating training
Epoch 00011: saving model to /workspace/tao-experiments/ssd/experiment_dir_unpruned_mobilenet/weights/ssd_mobilenet_v2_epoch_011.hdf5
2023-10-24 06:05:24,384 [TAO Toolkit] [INFO] root 2102: Training loop in progress
2023-10-24 06:05:24,384 [TAO Toolkit] [INFO] root 2102: Training loop complete.
2023-10-24 06:05:24,385 [TAO Toolkit] [INFO] root 2102: Training finished successfully.
2023-10-24 06:05:24,389 [TAO Toolkit] [INFO] __main__ 569: Training finished successfully.
Execution status: PASS
2023-10-24 08:05:31,296 [TAO Toolkit] [INFO] nvidia_tao_cli.components.docker_handler.docker_handler 337: Stopping container.