#!/usr/bin/env python3
################################################################################
# SPDX-FileCopyrightText: Copyright (c) 2019-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import sys
sys.path.append('../')
import gi
gi.require_version('Gst', '1.0')
from gi.repository import GLib, Gst
import sys
from optparse import OptionParser
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
from common.utils import long_to_uint64
import pyds
import argparse
from common.FPS import PERF_DATA
MAX_DISPLAY_LEN = 64
MAX_TIME_STAMP_LEN = 32
PGIE_CLASS_ID_VEHICLE = 0
PGIE_CLASS_ID_BICYCLE = 1
PGIE_CLASS_ID_PERSON = 2
PGIE_CLASS_ID_ROADSIGN = 3
MUXER_OUTPUT_WIDTH = 1920
MUXER_OUTPUT_HEIGHT = 1080
MUXER_BATCH_TIMEOUT_USEC = 4000000
input_file = None
cfg_file = None
topic = None
no_display = False
perf_data = None
GPU_ID = 0
OSD_PROCESS_MODE = 0
OSD_DISPLAY_TEXT = 1
PGIE_CONFIG_FILE = "dstest4_pgie_config.txt"
MSCONV_CONFIG_FILE = "dstest4_msgconv_config.txt"
pgie_classes_str = ["Vehicle", "TwoWheeler", "Person", "Roadsign"]
def set_pgie_properties(pgie, pgie_config_path, gpu_id, number_sources):
pgie.set_property('config-file-path', PGIE_CONFIG_FILE)
pgie.set_property('gpu_id', gpu_id)
pgie_batch_size = pgie.get_property("batch-size")
if pgie_batch_size != number_sources:
print(
"WARNING: Overriding infer-config batch-size",
pgie_batch_size,
" with number of sources ",
number_sources,
" \n",
)
pgie.set_property("batch-size", number_sources)
def cb_newpad(decodebin, decoder_src_pad, data):
"""
The function is called when a new pad is created by the decodebin.
The function checks if the new pad is for video and not audio.
If the new pad is for video, the function checks if the pad caps contain NVMM memory features.
If the pad caps contain NVMM memory features, the function links the decodebin pad to the source bin
ghost pad.
If the pad caps do not contain NVMM memory features, the function prints an error message.
:param decodebin: The decodebin element that is creating the new pad
:param decoder_src_pad: The source pad created by the decodebin element
:param data: This is the data that was passed to the callback function. In this case, it is the
source_bin
"""
print("In cb_newpad\n")
caps = decoder_src_pad.get_current_caps()
gststruct = caps.get_structure(0)
gstname = gststruct.get_name()
source_bin = data
features = caps.get_features(0)
# Need to check if the pad created by the decodebin is for video and not
# audio.
print("gstname=", gstname)
if gstname.find("video") != -1:
# Link the decodebin pad only if decodebin has picked nvidia
# decoder plugin nvdec_*. We do this by checking if the pad caps contain
# NVMM memory features.
print("features=", features)
if features.contains("memory:NVMM"):
# Get the source bin ghost pad
bin_ghost_pad = source_bin.get_static_pad("src")
if not bin_ghost_pad.set_target(decoder_src_pad):
sys.stderr.write(
"Failed to link decoder src pad to source bin ghost pad\n"
)
else:
sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n")
def decodebin_child_added(child_proxy, Object, name, user_data):
"""
If the child added to the decodebin is another decodebin, connect to its child-added signal. If the
child added is a source, set its drop-on-latency property to True.
:param child_proxy: The child element that was added to the decodebin
:param Object: The object that emitted the signal
:param name: The name of the element that was added
:param user_data: This is a pointer to the data that you want to pass to the callback function
"""
print("Decodebin child added:", name, "\n")
if name.find("decodebin") != -1:
Object.connect("child-added", decodebin_child_added, user_data)
if "source" in name:
source_element = child_proxy.get_by_name("source")
if source_element.find_property("drop-on-latency") != None:
Object.set_property("drop-on-latency", True)
def create_source_bin(index, uri):
"""
It creates a GstBin, adds a uridecodebin to it, and connects the uridecodebin's pad-added signal to
a callback function
:param index: The index of the source bin
:param uri: The URI of the video file to be played
:return: A bin with a uri decode bin and a ghost pad.
"""
print("Creating source bin")
# Create a source GstBin to abstract this bin's content from the rest of the
# pipeline
bin_name = "source-bin-%02d" % index
print(bin_name)
nbin = Gst.Bin.new(bin_name)
if not nbin:
sys.stderr.write(" Unable to create source bin \n")
# Source element for reading from the uri.
# We will use decodebin and let it figure out the container format of the
# stream and the codec and plug the appropriate demux and decode plugins.
uri_decode_bin = Gst.ElementFactory.make("uridecodebin", "uri-decode-bin")
if not uri_decode_bin:
sys.stderr.write(" Unable to create uri decode bin \n")
# We set the input uri to the source element
uri_decode_bin.set_property("uri", uri)
# Connect to the "pad-added" signal of the decodebin which generates a
# callback once a new pad for raw data has beed created by the decodebin
uri_decode_bin.connect("pad-added", cb_newpad, nbin)
uri_decode_bin.connect("child-added", decodebin_child_added, nbin)
# We need to create a ghost pad for the source bin which will act as a proxy
# for the video decoder src pad. The ghost pad will not have a target right
# now. Once the decode bin creates the video decoder and generates the
# cb_newpad callback, we will set the ghost pad target to the video decoder
# src pad.
Gst.Bin.add(nbin, uri_decode_bin)
bin_pad = nbin.add_pad(Gst.GhostPad.new_no_target("src", Gst.PadDirection.SRC))
if not bin_pad:
sys.stderr.write(" Failed to add ghost pad in source bin \n")
return None
return nbin
def make_element(element_name, i):
"""
Creates a Gstreamer element with unique name
Unique name is created by adding element type and index e.g. `element_name-i`
Unique name is essential for all the element in pipeline otherwise gstreamer will throw exception.
:param element_name: The name of the element to create
:param i: the index of the element in the pipeline
:return: A Gst.Element object
"""
element = Gst.ElementFactory.make(element_name, element_name)
if not element:
sys.stderr.write(" Unable to create {0}".format(element_name))
element.set_property("name", "{0}-{1}".format(element_name, str(i)))
return element
# Callback function for deep-copying an NvDsEventMsgMeta struct
def meta_copy_func(data, user_data):
# Cast data to pyds.NvDsUserMeta
user_meta = pyds.NvDsUserMeta.cast(data)
src_meta_data = user_meta.user_meta_data
# Cast src_meta_data to pyds.NvDsEventMsgMeta
srcmeta = pyds.NvDsEventMsgMeta.cast(src_meta_data)
# Duplicate the memory contents of srcmeta to dstmeta
# First use pyds.get_ptr() to get the C address of srcmeta, then
# use pyds.memdup() to allocate dstmeta and copy srcmeta into it.
# pyds.memdup returns C address of the allocated duplicate.
dstmeta_ptr = pyds.memdup(pyds.get_ptr(srcmeta),
sys.getsizeof(pyds.NvDsEventMsgMeta))
# Cast the duplicated memory to pyds.NvDsEventMsgMeta
dstmeta = pyds.NvDsEventMsgMeta.cast(dstmeta_ptr)
# Duplicate contents of ts field. Note that reading srcmeat.ts
# returns its C address. This allows to memory operations to be
# performed on it.
dstmeta.ts = pyds.memdup(srcmeta.ts, MAX_TIME_STAMP_LEN + 1)
# Copy the sensorStr. This field is a string property. The getter (read)
# returns its C address. The setter (write) takes string as input,
# allocates a string buffer and copies the input string into it.
# pyds.get_string() takes C address of a string and returns the reference
# to a string object and the assignment inside the binder copies content.
dstmeta.sensorStr = pyds.get_string(srcmeta.sensorStr)
if srcmeta.objSignature.size > 0:
dstmeta.objSignature.signature = pyds.memdup(
srcmeta.objSignature.signature, srcmeta.objSignature.size)
dstmeta.objSignature.size = srcmeta.objSignature.size
if srcmeta.extMsgSize > 0:
if srcmeta.objType == pyds.NvDsObjectType.NVDS_OBJECT_TYPE_VEHICLE:
srcobj = pyds.NvDsVehicleObject.cast(srcmeta.extMsg)
obj = pyds.alloc_nvds_vehicle_object()
obj.type = pyds.get_string(srcobj.type)
obj.make = pyds.get_string(srcobj.make)
obj.model = pyds.get_string(srcobj.model)
obj.color = pyds.get_string(srcobj.color)
obj.license = pyds.get_string(srcobj.license)
obj.region = pyds.get_string(srcobj.region)
dstmeta.extMsg = obj
dstmeta.extMsgSize = sys.getsizeof(pyds.NvDsVehicleObject)
if srcmeta.objType == pyds.NvDsObjectType.NVDS_OBJECT_TYPE_PERSON:
srcobj = pyds.NvDsPersonObject.cast(srcmeta.extMsg)
obj = pyds.alloc_nvds_person_object()
obj.age = srcobj.age
obj.gender = pyds.get_string(srcobj.gender)
obj.cap = pyds.get_string(srcobj.cap)
obj.hair = pyds.get_string(srcobj.hair)
obj.apparel = pyds.get_string(srcobj.apparel)
dstmeta.extMsg = obj
dstmeta.extMsgSize = sys.getsizeof(pyds.NvDsVehicleObject)
return dstmeta
# Callback function for freeing an NvDsEventMsgMeta instance
def meta_free_func(data, user_data):
user_meta = pyds.NvDsUserMeta.cast(data)
srcmeta = pyds.NvDsEventMsgMeta.cast(user_meta.user_meta_data)
# pyds.free_buffer takes C address of a buffer and frees the memory
# It's a NOP if the address is NULL
pyds.free_buffer(srcmeta.ts)
pyds.free_buffer(srcmeta.sensorStr)
if srcmeta.objSignature.size > 0:
pyds.free_buffer(srcmeta.objSignature.signature)
srcmeta.objSignature.size = 0
if srcmeta.extMsgSize > 0:
if srcmeta.objType == pyds.NvDsObjectType.NVDS_OBJECT_TYPE_VEHICLE:
obj = pyds.NvDsVehicleObject.cast(srcmeta.extMsg)
pyds.free_buffer(obj.type)
pyds.free_buffer(obj.color)
pyds.free_buffer(obj.make)
pyds.free_buffer(obj.model)
pyds.free_buffer(obj.license)
pyds.free_buffer(obj.region)
if srcmeta.objType == pyds.NvDsObjectType.NVDS_OBJECT_TYPE_PERSON:
obj = pyds.NvDsPersonObject.cast(srcmeta.extMsg)
pyds.free_buffer(obj.gender)
pyds.free_buffer(obj.cap)
pyds.free_buffer(obj.hair)
pyds.free_buffer(obj.apparel)
pyds.free_gbuffer(srcmeta.extMsg)
srcmeta.extMsgSize = 0
def generate_vehicle_meta(data):
obj = pyds.NvDsVehicleObject.cast(data)
obj.type = "sedan"
obj.color = "blue"
obj.make = "Bugatti"
obj.model = "M"
obj.license = "XX1234"
obj.region = "CA"
return obj
def generate_person_meta(data):
obj = pyds.NvDsPersonObject.cast(data)
obj.age = 45
obj.cap = "none"
obj.hair = "black"
obj.gender = "male"
obj.apparel = "formal"
return obj
def generate_event_msg_meta(data, class_id):
meta = pyds.NvDsEventMsgMeta.cast(data)
meta.sensorId = 0
meta.placeId = 0
meta.moduleId = 0
meta.sensorStr = "sensor-0"
meta.ts = pyds.alloc_buffer(MAX_TIME_STAMP_LEN + 1)
pyds.generate_ts_rfc3339(meta.ts, MAX_TIME_STAMP_LEN)
# This demonstrates how to attach custom objects.
# Any custom object as per requirement can be generated and attached
# like NvDsVehicleObject / NvDsPersonObject. Then that object should
# be handled in payload generator library (nvmsgconv.cpp) accordingly.
if class_id == PGIE_CLASS_ID_VEHICLE:
meta.type = pyds.NvDsEventType.NVDS_EVENT_MOVING
meta.objType = pyds.NvDsObjectType.NVDS_OBJECT_TYPE_VEHICLE
meta.objClassId = PGIE_CLASS_ID_VEHICLE
obj = pyds.alloc_nvds_vehicle_object()
obj = generate_vehicle_meta(obj)
meta.extMsg = obj
meta.extMsgSize = sys.getsizeof(pyds.NvDsVehicleObject)
if class_id == PGIE_CLASS_ID_PERSON:
meta.type = pyds.NvDsEventType.NVDS_EVENT_ENTRY
meta.objType = pyds.NvDsObjectType.NVDS_OBJECT_TYPE_PERSON
meta.objClassId = PGIE_CLASS_ID_PERSON
obj = pyds.alloc_nvds_person_object()
obj = generate_person_meta(obj)
meta.extMsg = obj
meta.extMsgSize = sys.getsizeof(pyds.NvDsPersonObject)
return meta
# osd_sink_pad_buffer_probe will extract metadata received on OSD sink pad
# and update params for drawing rectangle, object information etc.
# IMPORTANT NOTE:
# a) probe() callbacks are synchronous and thus holds the buffer
# (info.get_buffer()) from traversing the pipeline until user return.
# b) loops inside probe() callback could be costly in python.
# So users shall optimize according to their use-case.
def osd_sink_pad_buffer_probe(pad, info, u_data):
frame_number = 0
# Intiallizing object counter with 0.
obj_counter = {
PGIE_CLASS_ID_VEHICLE: 0,
PGIE_CLASS_ID_PERSON: 0,
PGIE_CLASS_ID_BICYCLE: 0,
PGIE_CLASS_ID_ROADSIGN: 0
}
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer ")
return
# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
if not batch_meta:
return Gst.PadProbeReturn.OK
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
# Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
# The casting is done by pyds.NvDsFrameMeta.cast()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
continue
is_first_object = True
# Short example of attribute access for frame_meta:
# print("Frame Number is ", frame_meta.frame_num)
# print("Source id is ", frame_meta.source_id)
# print("Batch id is ", frame_meta.batch_id)
# print("Source Frame Width ", frame_meta.source_frame_width)
# print("Source Frame Height ", frame_meta.source_frame_height)
# print("Num object meta ", frame_meta.num_obj_meta)
frame_number = frame_meta.frame_num
l_obj = frame_meta.obj_meta_list
while l_obj is not None:
try:
obj_meta = pyds.NvDsObjectMeta.cast(l_obj.data)
except StopIteration:
continue
# Update the object text display
txt_params = obj_meta.text_params
# Set display_text. Any existing display_text string will be
# freed by the bindings module.
txt_params.display_text = pgie_classes_str[obj_meta.class_id]
obj_counter[obj_meta.class_id] += 1
# Font , font-color and font-size
txt_params.font_params.font_name = "Serif"
txt_params.font_params.font_size = 10
# set(red, green, blue, alpha); set to White
txt_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0)
# Text background color
txt_params.set_bg_clr = 1
# set(red, green, blue, alpha); set to Black
txt_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0)
# Ideally NVDS_EVENT_MSG_META should be attached to buffer by the
# component implementing detection / recognition logic.
# Here it demonstrates how to use / attach that meta data.
if (frame_number % 2) == 0:
# Frequency of messages to be send will be based on use case.
# Here message is being sent for first object every 30 frames.
# Allocating an NvDsEventMsgMeta instance and getting
# reference to it. The underlying memory is not manged by
# Python so that downstream plugins can access it. Otherwise
# the garbage collector will free it when this probe exits.
msg_meta = pyds.alloc_nvds_event_msg_meta()
msg_meta.bbox.top = obj_meta.rect_params.top
msg_meta.bbox.left = obj_meta.rect_params.left
msg_meta.bbox.width = obj_meta.rect_params.width
msg_meta.bbox.height = obj_meta.rect_params.height
msg_meta.frameId = frame_number
msg_meta.trackingId = long_to_uint64(obj_meta.object_id)
msg_meta.confidence = obj_meta.confidence
msg_meta = generate_event_msg_meta(msg_meta, obj_meta.class_id)
user_event_meta = pyds.nvds_acquire_user_meta_from_pool(
batch_meta)
if user_event_meta:
user_event_meta.user_meta_data = msg_meta
user_event_meta.base_meta.meta_type = pyds.NvDsMetaType.NVDS_EVENT_MSG_META
# Setting callbacks in the event msg meta. The bindings
# layer will wrap these callables in C functions.
# Currently only one set of callbacks is supported.
pyds.user_copyfunc(user_event_meta, meta_copy_func)
pyds.user_releasefunc(user_event_meta, meta_free_func)
pyds.nvds_add_user_meta_to_frame(frame_meta,
user_event_meta)
else:
print("Error in attaching event meta to buffer\n")
is_first_object = False
try:
l_obj = l_obj.next
except StopIteration:
break
try:
l_frame = l_frame.next
except StopIteration:
break
print("Frame Number =", frame_number, "Vehicle Count =",
obj_counter[PGIE_CLASS_ID_VEHICLE], "Person Count =",
obj_counter[PGIE_CLASS_ID_PERSON])
return Gst.PadProbeReturn.OK
def main(args):
# registering callbacks
pyds.register_user_copyfunc(meta_copy_func)
pyds.register_user_releasefunc(meta_free_func)
input_sources = args.input_videos
number_sources = len(input_sources)
global perf_data
perf_data = PERF_DATA(number_sources)
pgie_config_path = args.pgie_config_path
# Standard GStreamer initialization
Gst.init(None)
# Create gstreamer elements */
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()
is_live = False
if not pipeline:
sys.stderr.write("Unable to create Pipeline \n")
print("Creating streamux \n ")
# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write(" Unable to create NvStreamMux \n")
pipeline.add(streammux)
for i in range(number_sources):
print("Creating source_bin ", i, " \n ")
uri_name = input_sources[i]
if uri_name.find("rtsp://") == 0:
is_live = True
source_bin = create_source_bin(i, uri_name)
if not source_bin:
sys.stderr.write("Unable to create source bin \n")
pipeline.add(source_bin)
padname = "sink_%u" % i
sinkpad = streammux.get_request_pad(padname)
if not sinkpad:
sys.stderr.write("Unable to create sink pad bin \n")
srcpad = source_bin.get_static_pad("src")
if not srcpad:
sys.stderr.write("Unable to create src pad bin \n")
srcpad.link(sinkpad)
queue1 = Gst.ElementFactory.make("queue", "queue1")
pipeline.add(queue1)
print("Creating Pgie \n ")
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not pgie:
sys.stderr.write(" Unable to create pgie \n")
print("Creating nvstreamdemux \n ")
nvstreamdemux = Gst.ElementFactory.make("nvstreamdemux", "nvstreamdemux")
if not nvstreamdemux:
sys.stderr.write(" Unable to create nvstreamdemux \n")
if is_live:
print("Atleast one of the sources is live")
streammux.set_property("live-source", 1)
streammux.set_property('width', 1920)
streammux.set_property('height', 1080)
streammux.set_property("batch-size", number_sources)
streammux.set_property("batched-push-timeout", 4000000)
set_pgie_properties(pgie, pgie_config_path, GPU_ID, number_sources)
pgie_batch_size = pgie.get_property("batch-size")
if pgie_batch_size != number_sources:
print(
"WARNING: Overriding infer-config batch-size",
pgie_batch_size,
" with number of sources ",
number_sources,
" \n",
)
pgie.set_property("batch-size", number_sources)
print("Adding elements to Pipeline \n")
pipeline.add(pgie)
pipeline.add(nvstreamdemux)
# linking
streammux.link(queue1)
queue1.link(pgie)
pgie.link(nvstreamdemux)
##creating demux src
for i in range(number_sources):
print("Creating FakeSink \n")
sink = make_element("fakesink", i)
if not sink:
sys.stderr.write(" Unable to create fakesink \n")
pipeline.add(sink)
# creating queue
queue = make_element("queue", i)
pipeline.add(queue)
# creating nvvidconv
nvvideoconvert = make_element("nvvideoconvert", i)
pipeline.add(nvvideoconvert)
# creating nvosd
nvdsosd = make_element("nvdsosd", i)
pipeline.add(nvdsosd)
nvdsosd.set_property("process-mode", OSD_PROCESS_MODE)
nvdsosd.set_property("display-text", OSD_DISPLAY_TEXT)
# Creating tee to split msgbroker + sink
tee = make_element("tee", i)
sink_queue = make_element("queue", f"sink-{i}")
broker_queue = make_element("queue", f"broker-{i}")
pipeline.add(tee)
pipeline.add(sink_queue)
pipeline.add(broker_queue)
msgbroker = make_element("nvmsgbroker", i)
msgconv = make_element("nvmsgconv", i)
msgconv.set_property('config', args.msgconv_config_path)
msgconv.set_property('payload-type', 1)
msgconv.set_property('comp-id', i)
#msgconv.set_property('config', MSCONV_CONFIG_FILE)
msgbroker.set_property('proto-lib', "/opt/nvidia/deepstream/deepstream/lib/libnvds_amqp_proto.so")
msgbroker.set_property('config', args.msgbroker_config_path)
msgbroker.set_property('sync', False)
topic = f"event.{i}"
msgbroker.set_property('topic', topic)
msgbroker.set_property('comp-id', i)
pipeline.add(msgconv)
pipeline.add(msgbroker)
# connect nvstreamdemux -> queue
padname = "src_%u" % i
demuxsrcpad = nvstreamdemux.get_request_pad(padname)
if not demuxsrcpad:
sys.stderr.write("Unable to create demux src pad \n")
queuesinkpad = queue.get_static_pad("sink")
if not queuesinkpad:
sys.stderr.write("Unable to create queue sink pad \n")
demuxsrcpad.link(queuesinkpad)
# connect tee -> broker_queue/sink_queue
sink_pad = broker_queue.get_static_pad("sink")
tee_msg_pad = tee.get_request_pad('src_%u')
tee_render_pad = tee.get_request_pad("src_%u")
if not tee_msg_pad or not tee_render_pad:
sys.stderr.write("Unable to get request pads\n")
tee_msg_pad.link(sink_pad)
sink_pad = sink_queue.get_static_pad("sink")
tee_render_pad.link(sink_pad)
# connect queue -> nvvidconv -> nvosd -> tee -> broker_queue/sink_queue
queue.link(nvvideoconvert)
nvvideoconvert.link(nvdsosd)
nvdsosd.link(tee)
broker_queue.link(msgconv)
msgconv.link(msgbroker)
sink_queue.link(sink)
sink.set_property("qos", 0)
# Lets add probe to get informed of the meta data generated, we add probe to
# the sink pad of the osd element, since by that time, the buffer would have
# had got all the metadata.
osdsinkpad = nvdsosd.get_static_pad("sink")
if not osdsinkpad:
sys.stderr.write(" Unable to get sink pad of nvosd \n")
osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)
print("Linking elements in the Pipeline \n")
# create an event loop and feed gstreamer bus mesages to it
loop = GLib.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect("message", bus_call, loop)
# List the sources
print("Now playing...")
for i, source in enumerate(input_sources):
print(i, ": ", source)
print("Starting pipeline \n")
# start play back and listed to events
pipeline.set_state(Gst.State.PLAYING)
try:
loop.run()
except:
pass
# cleanup
print("Exiting app\n")
pipeline.set_state(Gst.State.NULL)
# Parse and validate input arguments
def parse_args():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--input-videos',
nargs = '+',
required=True,
help='')
parser.add_argument('--pgie-config-path',
required=True,
help='')
parser.add_argument('--sgie-config-path',
required=False,
help='')
parser.add_argument('--enable-tracking',
default=1,
required=False,
help='')
parser.add_argument('--enable-display',
default=0,
required=False,
help='')
parser.add_argument('--enable-video-filesink',
default=1,
required=False,
help='')
parser.add_argument('--msgconv-config-path',
required=True,
help='')
parser.add_argument('--msgbroker-config-path',
required=True,
help='')
parser.add_argument('--topic',
required=True,
help='Base topic to be used to send payloads')
args = parser.parse_args()
return args
if __name__ == '__main__':
ret = parse_args()
sys.exit(main(ret))
I ran it by putting it in the deepstream_test_4 directory and running the command below:
python3 deepstream_segfault_recreate.py --topic abc --input-videos file:///opt/nvidia/deepstream/deepstream-6.3/samples/streams/sample_1080p_h264.mp4 file:///opt/nvidia/deepstream/deepstream-6.3/samples/streams/sample_1080p_h265.mp4 --pgie-config-path dstest4_pgie_config.txt --msgconv-config-path dstest4_msgconv_config.txt --msgbroker-config-path cfg_amqp.txt
This is essentially a combination of deepstream_test_4 and multi_in_multi_out.