Cannot Convert Custom Model To TensorRT

Description

I am currently trying to run a trained model in a runtime system. I am inputting a video feed into my model, but the model currently only computes about 1-2 Frames Per Second. After some research, I read that TensorRT can help with this, so I am currently trying to convert my model to TensorRT. I copied the following code from here Accelerating Inference In TF-TRT User Guide :: NVIDIA Deep Learning Frameworks Documentation.

The code and error are as follows:

Code

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.python.compiler.tensorrt import trt_convert as trt

conversion_params = trt.DEFAULT_TRT_CONVERSION_PARAMS
conversion_params = conversion_params._replace(max_workspace_size_bytes=(1<<32))
conversion_params = conversion_params._replace(precision_mode="FP16")
conversion_params = conversion_params._replace(maximum_cached_engines=100)
converter = trt.TrtGraphConverterV2(input_saved_model_dir='/home/sorozco/alan_bot_model',conversion_params = conversion_params)
converter.convert()
converter.build(input_fn=my_input_fn)
converter.save(output_model_dir='/home/sorozco/alan_bot_model_trt')

def my_input_fn():
    # Input for a single inference call, for a network that has two input tensors:
    Inp1 = np.random.normal(size=(8, 16, 16, 3)).astype(np.float32)
    inp2 = np.random.normal(size=(8, 16, 16, 3)).astype(np.float32)
    yield (inp1, inp2)

model = tf.saved_model.load('/home/sorozco/alan_bot_model_trt/', tags=[tag_constants.SERVING])

Error

2021-04-19 15:09:18.670488: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] 
Successfully opened dynamic library libcudart.so.10.2
2021-04-19 15:09:28.223133: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] 
Successfully opened dynamic library libnvinfer.so.7
2021-04-19 15:09:29.176650: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] 
Successfully opened dynamic library libcuda.so.1
2021-04-19 15:09:29.217699: E tensorflow/stream_executor/cuda/cuda_driver.cc:328] failed call to 
cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
2021-04-19 15:09:29.217798: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (sorozco-desktop): /proc/driver/nvidia/version does not exist
2021-04-19 15:09:29.248773: W tensorflow/core/platform/profile_utils/cpu_utils.cc:116] Failed to find 
bogomips or clock in /proc/cpuinfo; cannot determine CPU frequency
2021-04-19 15:09:29.249723: I tensorflow/compiler/xla/service/service.cc:168] XLA service 
0x40da2780 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2021-04-19 15:09:29.249795: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor 
device (0): Host, Default Version
2021-04-19 15:09:44.597539: I tensorflow/core/grappler/devices.cc:69] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2021-04-19 15:09:44.597798: I tensorflow/core/grappler/clusters/single_machine.cc:356] Starting new session
2021-04-19 15:09:44.662813: I tensorflow/core/grappler/optimizers/meta_optimizer.cc:954] 
Optimization results for grappler item: graph_to_optimize
  function_optimizer: Graph size after: 45 nodes (34), 60 edges (49), time = 4.423ms.
  function_optimizer: function_optimizer did nothing. time = 0.119ms.

2021-04-19 15:09:55.306136: I tensorflow/core/grappler/devices.cc:69] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2021-04-19 15:09:55.391003: I tensorflow/core/grappler/clusters/single_machine.cc:356] Starting new session
Killed

I’m particular nervous about the following line:

2021-04-19 15:09:44.597539: I tensorflow/core/grappler/devices.cc:69] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0

Does this mean that I am not utilizing the GPU in my Jetson Nano? I would also like to know how to convert my custom model to TensorRT in general. This is somewhat foreign territory to me, and most tutorials are not very helpful.

Environment

TensorRT Version:

dpkg -l | grep nvinfer
ii  libnvinfer-bin                             7.1.3-1+cuda10.2                                 arm64        TensorRT binaries

GPU Type:

I'm not sure how to check this.

Nvidia Driver Version:

I'm not sure how to check this.

CUDA Version:

cat /usr/local/cuda/version.txt
CUDA Version 10.2.89

CUDNN Version:

cat /usr/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

#define CUDNN_MAJOR 8
#define CUDNN_MINOR 0
#define CUDNN_PATCHLEVEL 0
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

#endif /* CUDNN_VERSION_H */

Operating System + Version:

cat /etc/os-release
NAME="Ubuntu"
VERSION="18.04.5 LTS (Bionic Beaver)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 18.04.5 LTS"
VERSION_ID="18.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
VERSION_CODENAME=bionic
UBUNTU_CODENAME=bionic

Python Version (if applicable): Python 3.6.9
TensorFlow Version (if applicable): 2.4.0
PyTorch Version (if applicable):
Baremetal or Container (if container which image + tag):

Hi,
This looks like a Jetson issue. We recommend you to raise it to the respective platform from the below link

Thanks!

I would disagree. Although the code is run on a Jetson Nano, the error pertains to deep learning and TensorRT. I can omit Jetson Nano from the title.

Hi,
Request you to share the ONNX model and the script if not shared already so that we can assist you better.
Alongside you can try few things:

  1. validating your model with the below snippet

check_model.py

import sys
import onnx
filename = yourONNXmodel
model = onnx.load(filename)
onnx.checker.check_model(model).
2) Try running your model with trtexec command.

In case you are still facing issue, request you to share the trtexec “”–verbose"" log for further debugging
Thanks!

Thank you for the help!

I am confused by what you mean “ONNX”. My tensorflow model is a .pb file. The code I used to train my model can be found here: alan_bot/autonomous_driving_model.ipynb at model_creation · FezTheImmigrant/alan_bot · GitHub

Am I missing some conversion step to ONNX?

Hi @sorozco0612,

Sorry for the confusion. Could you please share with us tensorflow model (.pb) and conversion script. We would like to reproduce the error from our end for better assistance.

Thank you.

Of Course!
saved_model.pb (133.0 KB) conversion.py (1.2 KB)

Apologies, I uploaded the wrong conversion file. conversion.py (1.0 KB)

So I have made some progress. I decided to switch the conversion process over to my development machine. I altered the conversion code to:

def my_input_fn():
   inp1 = np.random.normal(size=(1, 432, 614, 3)).astype(np.float32)
   inp2 = np.random.normal(size=(1, 432, 614, 3)).astype(np.float32)
   yield (inp1,)


conversion_params = trt.DEFAULT_TRT_CONVERSION_PARAMS
conversion_params = conversion_params._replace(max_workspace_size_bytes=(1 << 32))
conversion_params = conversion_params._replace(precision_mode="FP16")
conversion_params = conversion_params._replace(maximum_cached_engines=100)
converter = trt.TrtGraphConverterV2( input_saved_model_dir="/home/sorozco0612/dev/alan_bot/model_creation/alan_bot_model", conversion_params=conversion_params,)

converter.convert()
converter.build(input_fn=my_input_fn)
converter.save("/home/sorozco0612/alan_bot_model_trt")

This actually creates the trt model, which is good I assume.

This is the code I am using to run inference on the RT model now:

model = tf.saved_model.load(
"/home/sorozco0612/alan_bot_model_trt/",
tags=[tf.compat.v1.saved_model.tag_constants.SERVING],)

graph_func = model.signatures[
tf.compat.v1.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY]

frozen_func = trt.convert_to_constants.convert_variables_to_constants_v2(graph_func)

output = frozen_func(np.zeros((432, 614, 3), np.uint8))[0].numpy()

I am just trying to infer with an empty image created using numpy, but I get the following error:

Traceback (most recent call last):
File "conversion.py", line 37, in <module>
output = frozen_func(np.zeros((432, 614, 3), np.uint8))[0].numpy()
File "/home/sorozco0612/virtual_envs/computer_vision/lib/python3.6/site-packages/tensorflow/python/eager/function.py", line 1669, in __call__
return self._call_impl(args, kwargs)
File "/home/sorozco0612/virtual_envs/computer_vision/lib/python3.6/site-packages/tensorflow/python/eager/wrap_function.py", line 247, in _call_impl
args, kwargs, cancellation_manager)
File "/home/sorozco0612/virtual_envs/computer_vision/lib/python3.6/site-packages/tensorflow/python/eager/function.py", line 1687, in _call_impl
return self._call_with_flat_signature(args, kwargs, cancellation_manager)
File "/home/sorozco0612/virtual_envs/computer_vision/lib/python3.6/site-packages/tensorflow/python/eager/function.py", line 1735, in _call_with_flat_signature
type(arg).__name__, str(arg)))
TypeError: pruned(conv2d_input): expected argument #0(zero-based) to be a Tensor; got ndarray ([[[0 0 0]
[0 0 0]
[0 0 0]
...

I guess my issue is now that I do not know how to pass data into my TensorRT model

1 Like

It seems my issues have extended beyond the original reason for this post, so I will mark my last post as the solution.