Does deepstream support ResNet10 SSD Caffe models ? I have tried with SSD(nvdsinfer_custom_impl_ssd)
with no luck
name: "ResNet-10-SSD"
layer {
name: "data"
type: "MemoryData"
top: "data"
top: "label"
transform_param {
mean_value: 117.258
mean_value: 121.735
mean_value: 127.623
}
memory_data_param {
batch_size: 1
channels: 3
height: 300
width: 300
}
}
layer {
name: "data_bn"
type: "BatchNorm"
bottom: "data"
top: "data_bn"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "data_scale"
type: "Scale"
bottom: "data_bn"
top: "data_bn"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data_bn"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
convolution_param {
num_output: 64
pad: 3
kernel_size: 7
stride: 2
weight_filler {
type: "msra"
variance_norm: FAN_OUT
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv1_bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "conv1_scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "conv1_relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv1_pool"
type: "Pooling"
bottom: "conv1"
top: "conv1_pool"
pooling_param {
kernel_size: 3
stride: 2
}
}
layer {
name: "layer_64_1_conv1"
type: "Convolution"
bottom: "conv1_pool"
top: "layer_64_1_conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_64_1_bn2"
type: "BatchNorm"
bottom: "layer_64_1_conv1"
top: "layer_64_1_conv1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "layer_64_1_scale2"
type: "Scale"
bottom: "layer_64_1_conv1"
top: "layer_64_1_conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_64_1_relu2"
type: "ReLU"
bottom: "layer_64_1_conv1"
top: "layer_64_1_conv1"
}
layer {
name: "layer_64_1_conv2"
type: "Convolution"
bottom: "layer_64_1_conv1"
top: "layer_64_1_conv2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_64_1_sum"
type: "Eltwise"
bottom: "layer_64_1_conv2"
bottom: "conv1_pool"
top: "layer_64_1_sum"
}
layer {
name: "layer_128_1_bn1"
type: "BatchNorm"
bottom: "layer_64_1_sum"
top: "layer_128_1_bn1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "layer_128_1_scale1"
type: "Scale"
bottom: "layer_128_1_bn1"
top: "layer_128_1_bn1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_128_1_relu1"
type: "ReLU"
bottom: "layer_128_1_bn1"
top: "layer_128_1_bn1"
}
layer {
name: "layer_128_1_conv1"
type: "Convolution"
bottom: "layer_128_1_bn1"
top: "layer_128_1_conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_128_1_bn2"
type: "BatchNorm"
bottom: "layer_128_1_conv1"
top: "layer_128_1_conv1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "layer_128_1_scale2"
type: "Scale"
bottom: "layer_128_1_conv1"
top: "layer_128_1_conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_128_1_relu2"
type: "ReLU"
bottom: "layer_128_1_conv1"
top: "layer_128_1_conv1"
}
layer {
name: "layer_128_1_conv2"
type: "Convolution"
bottom: "layer_128_1_conv1"
top: "layer_128_1_conv2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_128_1_conv_expand"
type: "Convolution"
bottom: "layer_128_1_bn1"
top: "layer_128_1_conv_expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 0
kernel_size: 1
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_128_1_sum"
type: "Eltwise"
bottom: "layer_128_1_conv2"
bottom: "layer_128_1_conv_expand"
top: "layer_128_1_sum"
}
layer {
name: "layer_256_1_bn1"
type: "BatchNorm"
bottom: "layer_128_1_sum"
top: "layer_256_1_bn1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "layer_256_1_scale1"
type: "Scale"
bottom: "layer_256_1_bn1"
top: "layer_256_1_bn1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_256_1_relu1"
type: "ReLU"
bottom: "layer_256_1_bn1"
top: "layer_256_1_bn1"
}
layer {
name: "layer_256_1_conv1"
type: "Convolution"
bottom: "layer_256_1_bn1"
top: "layer_256_1_conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_256_1_bn2"
type: "BatchNorm"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "layer_256_1_scale2"
type: "Scale"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_256_1_relu2"
type: "ReLU"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv1"
}
layer {
name: "layer_256_1_conv2"
type: "Convolution"
bottom: "layer_256_1_conv1"
top: "layer_256_1_conv2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_256_1_conv_expand"
type: "Convolution"
bottom: "layer_256_1_bn1"
top: "layer_256_1_conv_expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 0
kernel_size: 1
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_256_1_sum"
type: "Eltwise"
bottom: "layer_256_1_conv2"
bottom: "layer_256_1_conv_expand"
top: "layer_256_1_sum"
}
layer {
name: "layer_512_1_bn1"
type: "BatchNorm"
bottom: "layer_256_1_sum"
top: "layer_512_1_bn1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "layer_512_1_scale1"
type: "Scale"
bottom: "layer_512_1_bn1"
top: "layer_512_1_bn1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_512_1_relu1"
type: "ReLU"
bottom: "layer_512_1_bn1"
top: "layer_512_1_bn1"
}
layer {
name: "layer_512_1_conv1"
type: "Convolution"
bottom: "layer_512_1_bn1"
top: "layer_512_1_conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_512_1_bn2"
type: "BatchNorm"
bottom: "layer_512_1_conv1"
top: "layer_512_1_conv1"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "layer_512_1_scale2"
type: "Scale"
bottom: "layer_512_1_conv1"
top: "layer_512_1_conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "layer_512_1_relu2"
type: "ReLU"
bottom: "layer_512_1_conv1"
top: "layer_512_1_conv1"
}
layer {
name: "layer_512_1_conv2"
type: "Convolution"
bottom: "layer_512_1_conv1"
top: "layer_512_1_conv2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_512_1_conv_expand"
type: "Convolution"
bottom: "layer_512_1_bn1"
top: "layer_512_1_conv_expand"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 0
kernel_size: 1
stride: 2
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "layer_512_1_sum"
type: "Eltwise"
bottom: "layer_512_1_conv2"
bottom: "layer_512_1_conv_expand"
top: "layer_512_1_sum"
}
layer {
name: "last_bn"
type: "BatchNorm"
bottom: "layer_512_1_sum"
top: "layer_512_1_sum"
param {
lr_mult: 0
}
param {
lr_mult: 0
}
param {
lr_mult: 0
}
}
layer {
name: "last_scale"
type: "Scale"
bottom: "layer_512_1_sum"
top: "layer_512_1_sum"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
scale_param {
bias_term: true
}
}
layer {
name: "last_relu"
type: "ReLU"
bottom: "layer_512_1_sum"
top: "fc7"
}
layer {
name: "conv6_1_h"
type: "Convolution"
bottom: "fc7"
top: "conv6_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_1_relu"
type: "ReLU"
bottom: "conv6_1_h"
top: "conv6_1_h"
}
layer {
name: "conv6_2_h"
type: "Convolution"
bottom: "conv6_1_h"
top: "conv6_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_2_relu"
type: "ReLU"
bottom: "conv6_2_h"
top: "conv6_2_h"
}
layer {
name: "conv7_1_h"
type: "Convolution"
bottom: "conv6_2_h"
top: "conv7_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_1_relu"
type: "ReLU"
bottom: "conv7_1_h"
top: "conv7_1_h"
}
layer {
name: "conv7_2_h"
type: "Convolution"
bottom: "conv7_1_h"
top: "conv7_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_2_relu"
type: "ReLU"
bottom: "conv7_2_h"
top: "conv7_2_h"
}
layer {
name: "conv8_1_h"
type: "Convolution"
bottom: "conv7_2_h"
top: "conv8_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_1_relu"
type: "ReLU"
bottom: "conv8_1_h"
top: "conv8_1_h"
}
layer {
name: "conv8_2_h"
type: "Convolution"
bottom: "conv8_1_h"
top: "conv8_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_2_relu"
type: "ReLU"
bottom: "conv8_2_h"
top: "conv8_2_h"
}
layer {
name: "conv9_1_h"
type: "Convolution"
bottom: "conv8_2_h"
top: "conv9_1_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_1_relu"
type: "ReLU"
bottom: "conv9_1_h"
top: "conv9_1_h"
}
layer {
name: "conv9_2_h"
type: "Convolution"
bottom: "conv9_1_h"
top: "conv9_2_h"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_2_relu"
type: "ReLU"
bottom: "conv9_2_h"
top: "conv9_2_h"
}
layer {
name: "conv4_3_norm"
type: "Normalize"
bottom: "layer_256_1_bn1"
top: "conv4_3_norm"
norm_param {
across_spatial: false
scale_filler {
type: "constant"
value: 20
}
channel_shared: false
}
}
layer {
name: "conv4_3_norm_mbox_loc_ftune"
type: "Convolution"
bottom: "conv4_3_norm"
top: "conv4_3_norm_mbox_loc_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv4_3_norm_mbox_loc_perm_ftune"
type: "Permute"
bottom: "conv4_3_norm_mbox_loc_ftune"
top: "conv4_3_norm_mbox_loc_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv4_3_norm_mbox_loc_flat_ftune"
type: "Flatten"
bottom: "conv4_3_norm_mbox_loc_perm_ftune"
top: "conv4_3_norm_mbox_loc_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv4_3_norm_mbox_conf_ftune"
type: "Convolution"
bottom: "conv4_3_norm"
top: "conv4_3_norm_mbox_conf_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 8
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv4_3_norm_mbox_conf_perm_ftune"
type: "Permute"
bottom: "conv4_3_norm_mbox_conf_ftune"
top: "conv4_3_norm_mbox_conf_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv4_3_norm_mbox_conf_flat_ftune"
type: "Flatten"
bottom: "conv4_3_norm_mbox_conf_perm_ftune"
top: "conv4_3_norm_mbox_conf_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv4_3_norm_mbox_priorbox"
type: "PriorBox"
bottom: "conv4_3_norm"
bottom: "data"
top: "conv4_3_norm_mbox_priorbox"
prior_box_param {
min_size: 30
max_size: 60
aspect_ratio: 2
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 8
offset: 0.5
}
}
layer {
name: "fc7_mbox_loc_ftune"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_loc_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "fc7_mbox_loc_perm_ftune"
type: "Permute"
bottom: "fc7_mbox_loc_ftune"
top: "fc7_mbox_loc_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "fc7_mbox_loc_flat_ftune"
type: "Flatten"
bottom: "fc7_mbox_loc_perm_ftune"
top: "fc7_mbox_loc_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "fc7_mbox_conf_ftune"
type: "Convolution"
bottom: "fc7"
top: "fc7_mbox_conf_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 12
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "fc7_mbox_conf_perm_ftune"
type: "Permute"
bottom: "fc7_mbox_conf_ftune"
top: "fc7_mbox_conf_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "fc7_mbox_conf_flat_ftune"
type: "Flatten"
bottom: "fc7_mbox_conf_perm_ftune"
top: "fc7_mbox_conf_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "fc7_mbox_priorbox"
type: "PriorBox"
bottom: "fc7"
bottom: "data"
top: "fc7_mbox_priorbox"
prior_box_param {
min_size: 60
max_size: 111
aspect_ratio: 2
aspect_ratio: 3
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 16
offset: 0.5
}
}
layer {
name: "conv6_2_mbox_loc_ftune"
type: "Convolution"
bottom: "conv6_2_h"
top: "conv6_2_mbox_loc_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_2_mbox_loc_perm_ftune"
type: "Permute"
bottom: "conv6_2_mbox_loc_ftune"
top: "conv6_2_mbox_loc_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv6_2_mbox_loc_flat_ftune"
type: "Flatten"
bottom: "conv6_2_mbox_loc_perm_ftune"
top: "conv6_2_mbox_loc_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv6_2_mbox_conf_ftune"
type: "Convolution"
bottom: "conv6_2_h"
top: "conv6_2_mbox_conf_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 12
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv6_2_mbox_conf_perm_ftune"
type: "Permute"
bottom: "conv6_2_mbox_conf_ftune"
top: "conv6_2_mbox_conf_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv6_2_mbox_conf_flat_ftune"
type: "Flatten"
bottom: "conv6_2_mbox_conf_perm_ftune"
top: "conv6_2_mbox_conf_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv6_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv6_2_h"
bottom: "data"
top: "conv6_2_mbox_priorbox"
prior_box_param {
min_size: 111
max_size: 162
aspect_ratio: 2
aspect_ratio: 3
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 32
offset: 0.5
}
}
layer {
name: "conv7_2_mbox_loc_ftune"
type: "Convolution"
bottom: "conv7_2_h"
top: "conv7_2_mbox_loc_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 24
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_2_mbox_loc_perm_ftune"
type: "Permute"
bottom: "conv7_2_mbox_loc_ftune"
top: "conv7_2_mbox_loc_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv7_2_mbox_loc_flat_ftune"
type: "Flatten"
bottom: "conv7_2_mbox_loc_perm_ftune"
top: "conv7_2_mbox_loc_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv7_2_mbox_conf_ftune"
type: "Convolution"
bottom: "conv7_2_h"
top: "conv7_2_mbox_conf_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 12
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv7_2_mbox_conf_perm_ftune"
type: "Permute"
bottom: "conv7_2_mbox_conf_ftune"
top: "conv7_2_mbox_conf_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv7_2_mbox_conf_flat_ftune"
type: "Flatten"
bottom: "conv7_2_mbox_conf_perm_ftune"
top: "conv7_2_mbox_conf_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv7_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv7_2_h"
bottom: "data"
top: "conv7_2_mbox_priorbox"
prior_box_param {
min_size: 162
max_size: 213
aspect_ratio: 2
aspect_ratio: 3
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 64
offset: 0.5
}
}
layer {
name: "conv8_2_mbox_loc_ftune"
type: "Convolution"
bottom: "conv8_2_h"
top: "conv8_2_mbox_loc_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_2_mbox_loc_perm_ftune"
type: "Permute"
bottom: "conv8_2_mbox_loc_ftune"
top: "conv8_2_mbox_loc_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv8_2_mbox_loc_flat_ftune"
type: "Flatten"
bottom: "conv8_2_mbox_loc_perm_ftune"
top: "conv8_2_mbox_loc_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv8_2_mbox_conf_ftune"
type: "Convolution"
bottom: "conv8_2_h"
top: "conv8_2_mbox_conf_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 8
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv8_2_mbox_conf_perm_ftune"
type: "Permute"
bottom: "conv8_2_mbox_conf_ftune"
top: "conv8_2_mbox_conf_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv8_2_mbox_conf_flat_ftune"
type: "Flatten"
bottom: "conv8_2_mbox_conf_perm_ftune"
top: "conv8_2_mbox_conf_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv8_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv8_2_h"
bottom: "data"
top: "conv8_2_mbox_priorbox"
prior_box_param {
min_size: 213
max_size: 264
aspect_ratio: 2
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 100
offset: 0.5
}
}
layer {
name: "conv9_2_mbox_loc_ftune"
type: "Convolution"
bottom: "conv9_2_h"
top: "conv9_2_mbox_loc_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 16
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_2_mbox_loc_perm_ftune"
type: "Permute"
bottom: "conv9_2_mbox_loc_ftune"
top: "conv9_2_mbox_loc_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv9_2_mbox_loc_flat_ftune"
type: "Flatten"
bottom: "conv9_2_mbox_loc_perm_ftune"
top: "conv9_2_mbox_loc_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv9_2_mbox_conf_ftune_ftune"
type: "Convolution"
bottom: "conv9_2_h"
top: "conv9_2_mbox_conf_ftune_ftune"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 8
pad: 1
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv9_2_mbox_conf_perm_ftune"
type: "Permute"
bottom: "conv9_2_mbox_conf_ftune_ftune"
top: "conv9_2_mbox_conf_perm_ftune"
permute_param {
order: 0
order: 2
order: 3
order: 1
}
}
layer {
name: "conv9_2_mbox_conf_flat_ftune"
type: "Flatten"
bottom: "conv9_2_mbox_conf_perm_ftune"
top: "conv9_2_mbox_conf_flat_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "conv9_2_mbox_priorbox"
type: "PriorBox"
bottom: "conv9_2_h"
bottom: "data"
top: "conv9_2_mbox_priorbox"
prior_box_param {
min_size: 264
max_size: 315
aspect_ratio: 2
flip: true
clip: false
variance: 0.1
variance: 0.1
variance: 0.2
variance: 0.2
step: 300
offset: 0.5
}
}
layer {
name: "mbox_loc_ftune"
type: "Concat"
bottom: "conv4_3_norm_mbox_loc_flat_ftune"
bottom: "fc7_mbox_loc_flat_ftune"
bottom: "conv6_2_mbox_loc_flat_ftune"
bottom: "conv7_2_mbox_loc_flat_ftune"
bottom: "conv8_2_mbox_loc_flat_ftune"
bottom: "conv9_2_mbox_loc_flat_ftune"
top: "mbox_loc_ftune"
concat_param {
axis: 1
}
}
layer {
name: "mbox_conf_ftune"
type: "Concat"
bottom: "conv4_3_norm_mbox_conf_flat_ftune"
bottom: "fc7_mbox_conf_flat_ftune"
bottom: "conv6_2_mbox_conf_flat_ftune"
bottom: "conv7_2_mbox_conf_flat_ftune"
bottom: "conv8_2_mbox_conf_flat_ftune"
bottom: "conv9_2_mbox_conf_flat_ftune"
top: "mbox_conf_ftune"
concat_param {
axis: 1
}
}
layer {
name: "mbox_priorbox"
type: "Concat"
bottom: "conv4_3_norm_mbox_priorbox"
bottom: "fc7_mbox_priorbox"
bottom: "conv6_2_mbox_priorbox"
bottom: "conv7_2_mbox_priorbox"
bottom: "conv8_2_mbox_priorbox"
bottom: "conv9_2_mbox_priorbox"
top: "mbox_priorbox"
concat_param {
axis: 2
}
}
layer {
name: "mbox_conf_reshape_ftune"
type: "Reshape"
bottom: "mbox_conf_ftune"
top: "mbox_conf_reshape_ftune"
reshape_param {
shape {
dim: 0
dim: -1
dim: 2
}
}
}
layer {
name: "mbox_conf_softmax_ftune"
type: "Softmax"
bottom: "mbox_conf_reshape_ftune"
top: "mbox_conf_softmax_ftune"
softmax_param {
axis: 2
}
}
layer {
name: "mbox_conf_flatten_ftune"
type: "Flatten"
bottom: "mbox_conf_softmax_ftune"
top: "mbox_conf_flatten_ftune"
flatten_param {
axis: 1
}
}
layer {
name: "detection_out"
type: "DetectionOutput"
bottom: "mbox_loc_ftune"
bottom: "mbox_conf_flatten_ftune"
bottom: "mbox_priorbox"
top: "detection_out"
detection_output_param {
num_classes: 2
share_location: true
background_label_id: 0
nms_param {
nms_threshold: 0.45
top_k: 400
}
code_type: CENTER_SIZE
keep_top_k: 200
confidence_threshold: 0.01
}
}