Finally OpenCL 1.1 driver was released!

After waiting more than one year, the official OpenCL 1.1 driver(280.13 for linux, 280.19 beta for windows) was released. Many times I think Nvidia has given up the support of OpenCL. Now we should set our minds at rest. External Image

This is the result of sample oclDeviceQuery on my desktop:

./oclDeviceQuery Starting…

OpenCL SW Info:

CL_PLATFORM_NAME: NVIDIA CUDA
CL_PLATFORM_VERSION: OpenCL 1.1 CUDA 4.0.1
OpenCL SDK Revision: 7027912

OpenCL Device Info:

1 devices found supporting OpenCL:


Device GeForce GTX 570

CL_DEVICE_NAME: GeForce GTX 570
CL_DEVICE_VENDOR: NVIDIA Corporation
CL_DRIVER_VERSION: 280.13
CL_DEVICE_VERSION: OpenCL 1.1 CUDA
CL_DEVICE_OPENCL_C_VERSION: OpenCL C 1.1
CL_DEVICE_TYPE: CL_DEVICE_TYPE_GPU
CL_DEVICE_MAX_COMPUTE_UNITS: 15
CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS: 3
CL_DEVICE_MAX_WORK_ITEM_SIZES: 1024 / 1024 / 64
CL_DEVICE_MAX_WORK_GROUP_SIZE: 1024
CL_DEVICE_MAX_CLOCK_FREQUENCY: 1464 MHz
CL_DEVICE_ADDRESS_BITS: 32
CL_DEVICE_MAX_MEM_ALLOC_SIZE: 319 MByte
CL_DEVICE_GLOBAL_MEM_SIZE: 1279 MByte
CL_DEVICE_ERROR_CORRECTION_SUPPORT: no
CL_DEVICE_LOCAL_MEM_TYPE: local
CL_DEVICE_LOCAL_MEM_SIZE: 48 KByte
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE: 64 KByte
CL_DEVICE_QUEUE_PROPERTIES: CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
CL_DEVICE_QUEUE_PROPERTIES: CL_QUEUE_PROFILING_ENABLE
CL_DEVICE_IMAGE_SUPPORT: 1
CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
CL_DEVICE_SINGLE_FP_CONFIG: denorms INF-quietNaNs round-to-nearest round-to-zero round-to-inf fma

CL_DEVICE_IMAGE 2D_MAX_WIDTH 16384
2D_MAX_HEIGHT 16384
3D_MAX_WIDTH 2048
3D_MAX_HEIGHT 2048
3D_MAX_DEPTH 2048

CL_DEVICE_EXTENSIONS: cl_khr_byte_addressable_store
cl_khr_icd
cl_khr_gl_sharing
cl_nv_compiler_options
cl_nv_device_attribute_query
cl_nv_pragma_unroll
cl_khr_global_int32_base_atomics
cl_khr_global_int32_extended_atomics
cl_khr_local_int32_base_atomics
cl_khr_local_int32_extended_atomics
cl_khr_fp64

CL_DEVICE_COMPUTE_CAPABILITY_NV: 2.0
NUMBER OF MULTIPROCESSORS: 15
NUMBER OF CUDA CORES: 480
CL_DEVICE_REGISTERS_PER_BLOCK_NV: 32768
CL_DEVICE_WARP_SIZE_NV: 32
CL_DEVICE_GPU_OVERLAP_NV: CL_TRUE
CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV: CL_TRUE
CL_DEVICE_INTEGRATED_MEMORY_NV: CL_FALSE
CL_DEVICE_PREFERRED_VECTOR_WIDTH_ CHAR 1, SHORT 1, INT 1, LONG 1, FLOAT 1, DOUBLE 1


2D Image Formats Supported (71)

Channel Order Channel Type

1 CL_R CL_FLOAT
2 CL_R CL_HALF_FLOAT
3 CL_R CL_UNORM_INT8
4 CL_R CL_UNORM_INT16
5 CL_R CL_SNORM_INT16
6 CL_R CL_SIGNED_INT8
7 CL_R CL_SIGNED_INT16
8 CL_R CL_SIGNED_INT32
9 CL_R CL_UNSIGNED_INT8
10 CL_R CL_UNSIGNED_INT16
11 CL_R CL_UNSIGNED_INT32
12 CL_A CL_FLOAT
13 CL_A CL_HALF_FLOAT
14 CL_A CL_UNORM_INT8
15 CL_A CL_UNORM_INT16
16 CL_A CL_SNORM_INT16
17 CL_A CL_SIGNED_INT8
18 CL_A CL_SIGNED_INT16
19 CL_A CL_SIGNED_INT32
20 CL_A CL_UNSIGNED_INT8
21 CL_A CL_UNSIGNED_INT16
22 CL_A CL_UNSIGNED_INT32
23 CL_RG CL_FLOAT
24 CL_RG CL_HALF_FLOAT
25 CL_RG CL_UNORM_INT8
26 CL_RG CL_UNORM_INT16
27 CL_RG CL_SNORM_INT16
28 CL_RG CL_SIGNED_INT8
29 CL_RG CL_SIGNED_INT16
30 CL_RG CL_SIGNED_INT32
31 CL_RG CL_UNSIGNED_INT8
32 CL_RG CL_UNSIGNED_INT16
33 CL_RG CL_UNSIGNED_INT32
34 CL_RA CL_FLOAT
35 CL_RA CL_HALF_FLOAT
36 CL_RA CL_UNORM_INT8
37 CL_RA CL_UNORM_INT16
38 CL_RA CL_SNORM_INT16
39 CL_RA CL_SIGNED_INT8
40 CL_RA CL_SIGNED_INT16
41 CL_RA CL_SIGNED_INT32
42 CL_RA CL_UNSIGNED_INT8
43 CL_RA CL_UNSIGNED_INT16
44 CL_RA CL_UNSIGNED_INT32
45 CL_RGBA CL_FLOAT
46 CL_RGBA CL_HALF_FLOAT
47 CL_RGBA CL_UNORM_INT8
48 CL_RGBA CL_UNORM_INT16
49 CL_RGBA CL_SNORM_INT16
50 CL_RGBA CL_SIGNED_INT8
51 CL_RGBA CL_SIGNED_INT16
52 CL_RGBA CL_SIGNED_INT32
53 CL_RGBA CL_UNSIGNED_INT8
54 CL_RGBA CL_UNSIGNED_INT16
55 CL_RGBA CL_UNSIGNED_INT32
56 CL_BGRA CL_UNORM_INT8
57 CL_BGRA CL_SIGNED_INT8
58 CL_BGRA CL_UNSIGNED_INT8
59 CL_ARGB CL_UNORM_INT8
60 CL_ARGB CL_SIGNED_INT8
61 CL_ARGB CL_UNSIGNED_INT8
62 CL_INTENSITY CL_FLOAT
63 CL_INTENSITY CL_HALF_FLOAT
64 CL_INTENSITY CL_UNORM_INT8
65 CL_INTENSITY CL_UNORM_INT16
66 CL_INTENSITY CL_SNORM_INT16
67 CL_LUMINANCE CL_FLOAT
68 CL_LUMINANCE CL_HALF_FLOAT
69 CL_LUMINANCE CL_UNORM_INT8
70 CL_LUMINANCE CL_UNORM_INT16
71 CL_LUMINANCE CL_SNORM_INT16


3D Image Formats Supported (71)

Channel Order Channel Type

1 CL_R CL_FLOAT
2 CL_R CL_HALF_FLOAT
3 CL_R CL_UNORM_INT8
4 CL_R CL_UNORM_INT16
5 CL_R CL_SNORM_INT16
6 CL_R CL_SIGNED_INT8
7 CL_R CL_SIGNED_INT16
8 CL_R CL_SIGNED_INT32
9 CL_R CL_UNSIGNED_INT8
10 CL_R CL_UNSIGNED_INT16
11 CL_R CL_UNSIGNED_INT32
12 CL_A CL_FLOAT
13 CL_A CL_HALF_FLOAT
14 CL_A CL_UNORM_INT8
15 CL_A CL_UNORM_INT16
16 CL_A CL_SNORM_INT16
17 CL_A CL_SIGNED_INT8
18 CL_A CL_SIGNED_INT16
19 CL_A CL_SIGNED_INT32
20 CL_A CL_UNSIGNED_INT8
21 CL_A CL_UNSIGNED_INT16
22 CL_A CL_UNSIGNED_INT32
23 CL_RG CL_FLOAT
24 CL_RG CL_HALF_FLOAT
25 CL_RG CL_UNORM_INT8
26 CL_RG CL_UNORM_INT16
27 CL_RG CL_SNORM_INT16
28 CL_RG CL_SIGNED_INT8
29 CL_RG CL_SIGNED_INT16
30 CL_RG CL_SIGNED_INT32
31 CL_RG CL_UNSIGNED_INT8
32 CL_RG CL_UNSIGNED_INT16
33 CL_RG CL_UNSIGNED_INT32
34 CL_RA CL_FLOAT
35 CL_RA CL_HALF_FLOAT
36 CL_RA CL_UNORM_INT8
37 CL_RA CL_UNORM_INT16
38 CL_RA CL_SNORM_INT16
39 CL_RA CL_SIGNED_INT8
40 CL_RA CL_SIGNED_INT16
41 CL_RA CL_SIGNED_INT32
42 CL_RA CL_UNSIGNED_INT8
43 CL_RA CL_UNSIGNED_INT16
44 CL_RA CL_UNSIGNED_INT32
45 CL_RGBA CL_FLOAT
46 CL_RGBA CL_HALF_FLOAT
47 CL_RGBA CL_UNORM_INT8
48 CL_RGBA CL_UNORM_INT16
49 CL_RGBA CL_SNORM_INT16
50 CL_RGBA CL_SIGNED_INT8
51 CL_RGBA CL_SIGNED_INT16
52 CL_RGBA CL_SIGNED_INT32
53 CL_RGBA CL_UNSIGNED_INT8
54 CL_RGBA CL_UNSIGNED_INT16
55 CL_RGBA CL_UNSIGNED_INT32
56 CL_BGRA CL_UNORM_INT8
57 CL_BGRA CL_SIGNED_INT8
58 CL_BGRA CL_UNSIGNED_INT8
59 CL_ARGB CL_UNORM_INT8
60 CL_ARGB CL_SIGNED_INT8
61 CL_ARGB CL_UNSIGNED_INT8
62 CL_INTENSITY CL_FLOAT
63 CL_INTENSITY CL_HALF_FLOAT
64 CL_INTENSITY CL_UNORM_INT8
65 CL_INTENSITY CL_UNORM_INT16
66 CL_INTENSITY CL_SNORM_INT16
67 CL_LUMINANCE CL_FLOAT
68 CL_LUMINANCE CL_HALF_FLOAT
69 CL_LUMINANCE CL_UNORM_INT8
70 CL_LUMINANCE CL_UNORM_INT16
71 CL_LUMINANCE CL_SNORM_INT16

oclDeviceQuery, Platform Name = NVIDIA CUDA, Platform Version = OpenCL 1.1 CUDA 4.0.1, SDK Revision = 7027912, NumDevs = 1, Device = GeForce GTX 570

System Info:

Local Time/Date = 12:38:09, 08/03/2011
CPU Name: Intel(R) Core™ i5-2500K CPU @ 3.30GHz

of CPU processors: 4

Linux version 2.6.37.6-0.7-desktop (geeko@buildhost) (gcc version 4.5.1 20101208 [gcc-4_5-branch revision 167585] (SUSE Linux) ) #1 SMP PREEMPT 2011-07-21 02:17:24 +0200

And still, CL_DEVICE_MAX_MEM_ALLOC_SIZE is just 1/4 of CL_DEVICE_GLOBAL_MEM_SIZE :-/

Well, it is great news indeed :) But the windows driver is still beta, and Developer Drivers for WinVista and Win7 is still 270.81.

I hear that there are some significant performance degradation with this driver, at least on Windows, link. Can anyone confirm? Is it the same on Linux?

Haven’t noticed a degradation on Linux…Have noticed some speedup actually in the case of Multiple GPUs running simultaneously.

Now watch what will happen, Khronos will release OpenCL 1.2 tomorrow External Image

I take that back, I have noticed some slow downs…but have also noticed some speedups in the case of Multiple GPUs running simultaneously (clFinish is much faster in that case).

Pardon my ignorance of OpenCL but what are the hardware requirements for OpenCL 1.1 support? E.g. I have a Tesla C1060, does that support OpenCL 1.1?

I have not run any benchmark software of OpenCL on Linux. But for my little median filter sample the performance is improved slightly. After so long development, maybe the implementation of Nvidia has been changed greatly. And they should update the performance guide sometime. After all, we should be glad to see that Nvidia have not killed OpenCL. External Image

Yes, Tesla C1060 supports OpenCL1.1 with the Quadro/Tesla Driver v280.19 WHQL. If I make no mistake, any hardware which supports CUDA should support OpenCL 1.1 with the latest driver.

I am seeing upto 3x slowdown in linux (with 280.13). Mainly with compute heavy kernels, especially the one with a lot of SFU ops.

I don’t think so. According to this table the C1060 has Compute Capability 1.3, which is the same as e.g. the GTX 285, which in turn is not an OpenCL 1.1 device (see this post).