IMX477 driver instalation problem

Hello, I have problem with
HW:

  1. SeedStudio reComputer J1020 - details
  2. Goodram ssd drive - SSDPR-PX500-256-80-G2
  3. Raspberry PI HQ camera IMX477 - details
  4. Lens - details

SW:

user@nvidia:~$ cat /etc/nv_tegra_release

R32 (release), REVISION: 7.3, GCID: 31982016, BOARD: t210ref, EABI: aarch64, DATE: Tue Nov 22 17:30:08 UTC 2022

user@nvidia:~$ sudo apt-cache show nvidia-jetpack
Package: nvidia-jetpack
Version: 4.6.3-b17
Architecture: arm64
Maintainer: NVIDIA Corporation
Installed-Size: 194
Depends: nvidia-l4t-jetson-multimedia-api (>> 32.7-0), nvidia-l4t-jetson-multimedia-api (<< 32.8-0), nvidia-cuda (= 4.6.3-b17), nvidia-tensorrt (= 4.6.3-b17), nvidia-nsight-sys (= 4.6.3-b17), nvidia-cudnn8 (= 4.6.3-b17), nvidia-opencv (= 4.6.3-b17), nvidia-container (= 4.6.3-b17), nvidia-vpi (= 4.6.3-b17)
Homepage: http://developer.nvidia.com/jetson
Priority: standard
Section: metapackages
Filename: pool/main/n/nvidia-jetpack/nvidia-jetpack_4.6.3-b17_arm64.deb
Size: 29368
SHA256: 694254a8667ebbf13852548bdd13a5b8ae61481ac059845b706398eefdcb9e01
SHA1: 67140fc8463ec61fd69352b225244b639c799edd
MD5sum: afa1382b6caded6b736d494fc481bab4
Description: NVIDIA Jetpack Meta Package
Description-md5: ad1462289bdbc54909ae109d1d32c0a8

Package: nvidia-jetpack
Version: 4.6.2-b5
Architecture: arm64
Maintainer: NVIDIA Corporation
Installed-Size: 194
Depends: nvidia-cuda (= 4.6.2-b5), nvidia-opencv (= 4.6.2-b5), nvidia-cudnn8 (= 4.6.2-b5), nvidia-tensorrt (= 4.6.2-b5), nvidia-visionworks (= 4.6.2-b5), nvidia-container (= 4.6.2-b5), nvidia-vpi (= 4.6.2-b5), nvidia-l4t-jetson-multimedia-api (>> 32.7-0), nvidia-l4t-jetson-multimedia-api (<< 32.8-0)
Homepage: http://developer.nvidia.com/jetson
Priority: standard
Section: metapackages
Filename: pool/main/n/nvidia-jetpack/nvidia-jetpack_4.6.2-b5_arm64.deb
Size: 29378
SHA256: 925f4abff97e6024d86cff3b9e132e7c7554d05fb83590487381b7e925d5b2bb
SHA1: e3ef727e87df5c331aece34508c110d57d744fe9
MD5sum: 7cb2e387af41bc8143ac7b6525af7794
Description: NVIDIA Jetpack Meta Package
Description-md5: ad1462289bdbc54909ae109d1d32c0a8

Package: nvidia-jetpack
Version: 4.6.1-b110
Architecture: arm64
Maintainer: NVIDIA Corporation
Installed-Size: 194
Depends: nvidia-cuda (= 4.6.1-b110), nvidia-opencv (= 4.6.1-b110), nvidia-cudnn8 (= 4.6.1-b110), nvidia-tensorrt (= 4.6.1-b110), nvidia-visionworks (= 4.6.1-b110), nvidia-container (= 4.6.1-b110), nvidia-vpi (= 4.6.1-b110), nvidia-l4t-jetson-multimedia-api (>> 32.7-0), nvidia-l4t-jetson-multimedia-api (<< 32.8-0)
Homepage: http://developer.nvidia.com/jetson
Priority: standard
Section: metapackages
Filename: pool/main/n/nvidia-jetpack/nvidia-jetpack_4.6.1-b110_arm64.deb
Size: 29366
SHA256: acfd9e75af780eab165361d61de4b4fe4974890864fe191060b402ac4c2f54d5
SHA1: a016568ac53705acc145a9f7e60505707bea259f
MD5sum: 79be976b184a8c885bd9169ea5b7fb7b
Description: NVIDIA Jetpack Meta Package
Description-md5: ad1462289bdbc54909ae109d1d32c0a8

user@nvidia:~$ dmesg | grep -E “imx477|imx219|arducam”
[ 0.211575] DTS File Name: /var/jenkins_home/workspace/n_nano_kernel_l4t-32.7.2-arducam/kernel/kernel-4.9/arch/arm64/boot/dts/…/…/…/…/…/…/hardware/nvidia/platform/t210/batuu/kernel-dts/tegra210-p3448-0003-p3542-0000.dts
[ 0.408290] DTS File Name: /var/jenkins_home/workspace/n_nano_kernel_l4t-32.7.2-arducam/kernel/kernel-4.9/arch/arm64/boot/dts/…/…/…/…/…/…/hardware/nvidia/platform/t210/batuu/kernel-dts/tegra210-p3448-0003-p3542-0000.dts
[ 1.279426] imx477 6-001a: tegracam sensor driver:imx477_v2.0.6
[ 1.579797] imx477 6-001a: imx477_board_setup: error during i2c read probe (-121)
[ 1.587394] imx477 6-001a: board setup failed
[ 1.591866] imx477: probe of 6-001a failed with error -121

But still can’t see any “video?” in /dev/

user@nvidia:~$ ls /dev/vid*
ls: cannot access ‘/dev/vid*’: No such file or directory

Also there is a problem while setting up driver after instalation:

user@nvidia:~$ sudo ./install_full.sh -m imx477
–2023-03-14 17:49:07-- https://github.com/ArduCAM/MIPI_Camera/releases/download/v0.0.3/imx477_links.txt
Resolving github.com (github.com)… 140.82.121.3
Connecting to github.com (github.com)|140.82.121.3|:443… connected.
HTTP request sent, awaiting response… 302 Found
Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/186627215/10d26c97-da90-4f78-ab30-0f7d9a5aecf7?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20230314%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230314T174908Z&X-Amz-Expires=300&X-Amz-Signature=b43433356a9ef881b11ae8c097094e0467501719f1fb941022a395c157f958e6&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=186627215&response-content-disposition=attachment%3B%20filename%3Dimx477_links.txt&response-content-type=application%2Foctet-stream [following]
–2023-03-14 17:49:08-- https://objects.githubusercontent.com/github-production-release-asset-2e65be/186627215/10d26c97-da90-4f78-ab30-0f7d9a5aecf7?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20230314%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230314T174908Z&X-Amz-Expires=300&X-Amz-Signature=b43433356a9ef881b11ae8c097094e0467501719f1fb941022a395c157f958e6&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=186627215&response-content-disposition=attachment%3B%20filename%3Dimx477_links.txt&response-content-type=application%2Foctet-stream
Resolving objects.githubusercontent.com (objects.githubusercontent.com)… 185.199.109.133, 185.199.110.133, 185.199.108.133, …
Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.109.133|:443… connected.
HTTP request sent, awaiting response… 200 OK
Length: 8677 (8.5K) [application/octet-stream]
Saving to: ‘imx477_links.txt’

imx477_links.txt 100%[=====================================================================================================================>] 8.47K --.-KB/s in 0.008s

2023-03-14 17:49:08 (1005 KB/s) - ‘imx477_links.txt’ saved [8677/8677]

–2023-03-14 17:49:08-- https://github.com/ArduCAM/MIPI_Camera/releases/download/v0.0.1/arducam-nvidia-l4t-kernel-t210-4.9.299-tegra-32.7.3-20230111085049_arm64_imx477.deb
Resolving github.com (github.com)… 140.82.121.3
Connecting to github.com (github.com)|140.82.121.3|:443… connected.
HTTP request sent, awaiting response… 302 Found
Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/186627215/491a288f-38f5-47bd-b944-cb2486cad6bc?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20230314%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230314T174908Z&X-Amz-Expires=300&X-Amz-Signature=f11f8c7974ac5d427e10d0c9f68a6fcda1d3685cf3061cbd74cc848f59b1fc97&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=186627215&response-content-disposition=attachment%3B%20filename%3Darducam-nvidia-l4t-kernel-t210-4.9.299-tegra-32.7.3-20230111085049_arm64_imx477.deb&response-content-type=application%2Foctet-stream [following]
–2023-03-14 17:49:08-- https://objects.githubusercontent.com/github-production-release-asset-2e65be/186627215/491a288f-38f5-47bd-b944-cb2486cad6bc?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20230314%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230314T174908Z&X-Amz-Expires=300&X-Amz-Signature=f11f8c7974ac5d427e10d0c9f68a6fcda1d3685cf3061cbd74cc848f59b1fc97&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=186627215&response-content-disposition=attachment%3B%20filename%3Darducam-nvidia-l4t-kernel-t210-4.9.299-tegra-32.7.3-20230111085049_arm64_imx477.deb&response-content-type=application%2Foctet-stream
Resolving objects.githubusercontent.com (objects.githubusercontent.com)… 185.199.111.133, 185.199.108.133, 185.199.110.133, …
Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.111.133|:443… connected.
HTTP request sent, awaiting response… 200 OK
Length: 8222530 (7.8M) [application/octet-stream]
Saving to: ‘arducam-nvidia-l4t-kernel-t210-4.9.299-tegra-32.7.3-20230111085049_arm64_imx477.deb’

arducam-nvidia-l4t-kernel-t210-4.9.299-tegra-32.7.3- 100%[=====================================================================================================================>] 7.84M 823KB/s in 9.3s

2023-03-14 17:49:18 (859 KB/s) - ‘arducam-nvidia-l4t-kernel-t210-4.9.299-tegra-32.7.3-20230111085049_arm64_imx477.deb’ saved [8222530/8222530]

(Reading database … 169311 files and directories currently installed.)
Preparing to unpack arducam-nvidia-l4t-kernel-t210-4.9.299-tegra-32.7.3-20230111085049_arm64_imx477.deb …
Unpacking arducam-nvidia-l4t-kernel (4.9.299-tegra-32.7.3-20230111085049) over (4.9.299-tegra-32.7.3-20230111085049) …
Setting up arducam-nvidia-l4t-kernel (4.9.299-tegra-32.7.3-20230111085049) …
Traceback (most recent call last):
File “/opt/arducam/jetson-io/config-by-hardware.py”, line 125, in
main()
File “/opt/arducam/jetson-io/config-by-hardware.py”, line 94, in main
jetson = board.Board()
File “/opt/arducam/jetson-io/Jetson/board.py”, line 223, in init
self.appdir = _board_partition_mount(‘APP’)
File “/opt/arducam/jetson-io/Jetson/board.py”, line 161, in _board_partition_mount
raise RuntimeError(“Mountpoint %s already exists!” % path)
RuntimeError: Mountpoint /mnt/APP already exists!
Jetson Nano CSI Connector not found.
Traceback (most recent call last):
File “/opt/arducam/jetson-io/config-by-hardware.py”, line 125, in
main()
File “/opt/arducam/jetson-io/config-by-hardware.py”, line 94, in main
jetson = board.Board()
File “/opt/arducam/jetson-io/Jetson/board.py”, line 223, in init
self.appdir = _board_partition_mount(‘APP’)
File “/opt/arducam/jetson-io/Jetson/board.py”, line 161, in _board_partition_mount
raise RuntimeError(“Mountpoint %s already exists!” % path)
RuntimeError: Mountpoint /mnt/APP already exists!
2

An unknown error occurred while installing dtoverlays.
dpkg: error processing package arducam-nvidia-l4t-kernel (–install):
installed arducam-nvidia-l4t-kernel package post-installation script subprocess returned error exit status 255
Errors were encountered while processing:
arducam-nvidia-l4t-kernel

Unknown error, please send the error message to support@arducam.com

I also cannot run jetson-io.py after execution of command
sudo /opt/arducam/jetson-io/jetson-io.py
interface only blinks for nanosecond and program ends without any output.

This particular camera was successfully installed on Jetson Nano 2GB with 128GB SD card, so I can assume it’s not a camera issue.

hello szozda.jakub

you cannot use Jetson-IO to configure CSI because it’s only support with developer kit.

it looks camera device cannot register correctly according to below errors.

since you’re using a customize board.
please double check it’s compatible with developer kits.
and… please check those device tree settings all correct to your customize board to enable IMX477.

This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.