I set up a clean TX2 locally (Based on JP4.4), I can exec “deviceQuery” succeed on build-time. Steps as follow:
- Install necessary libs
$ sudo apt update; sudo apt install nvidia-container-runtime
cuda-samples-10-2
; sudo apt update -qq; sudo apt install -qq -y software-properties-common uidmap; sudo add-apt-repository -y ppa:projectatomic/ppa; sudo apt update -qq;sudo apt -qq -y install podman
- Pull l4t-base and build
$ git clone https://gitlab.com/nvidia/container-images/l4t-base.git; cd l4t-base; sudo make image
- Modify /etc/docker/daemon.json as below:
{
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
}
},
"default-runtime": "nvidia"
}
- Create Dockerfile as below:
$ cat Dockerfile
FROM nvcr.io/nvidia/l4t-base:r32.4.3
RUN apt update && apt install -y --no-install-recommends make g++
COPY ./deviceQuery /tmp
WORKDIR /tmp
RUN ./deviceQuery
- docker build via following command:
$ sudo docker build -t devicequery .
- Following are my build logs:
Step 3/5 : COPY ./deviceQuery /tmp
---> f8b3ad13d4c2
Step 4/5 : WORKDIR /tmp
---> Running in 32f2c94b1818
Removing intermediate container 32f2c94b1818
---> b29741609a9f
Step 5/5 : RUN ./deviceQuery
---> Running in 5953e6ba9075
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "NVIDIA Tegra X2"
CUDA Driver Version / Runtime Version 10.2 / 10.2
CUDA Capability Major/Minor version number: 6.2
Total amount of global memory: 3826 MBytes (4011683840 bytes)
( 2) Multiprocessors, (128) CUDA Cores/MP: 256 CUDA Cores
GPU Max Clock rate: 1300 MHz (1.30 GHz)
Memory Clock rate: 1300 Mhz
Memory Bus Width: 128-bit
L2 Cache Size: 524288 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: Yes
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.2, CUDA Runtime Version = 10.2, NumDevs = 1
Result = PASS
Removing intermediate container 5953e6ba9075
---> fcad4905644b
Successfully built fcad4905644b
Successfully tagged devicequery:latest
From my test, deviceQuery can work on build-time.
Not sure are there any gaps on your environment?