TC358743

Hi,

What I intend to do is to capture HDMI signal using B102 rev 2.
I flashed the board with newest L4T R28.1, and set the tc358743 as module.
In the tc358743 driver in function tc358743_initial_setup(struct v4l2_subdev *sd) I added printk, to check if the module is initialised. After loading the module with modprobe I can not see anything from tc358743 in dmesg. What is more, I cannot see any video device in /dev/
When I try gst-launch-1.0 v4l2src I get following message:
Setting pipeline to PAUSED …
ERROR: Pipeline doesn’t want to pause.
ERROR: from element /GstPipeline:pipeline0/GstV4l2Src:v4l2src0: Cannot identify device ‘/dev/video0’.
Additional debug info:
v4l2_calls.c(606): gst_v4l2_open (): /GstPipeline:pipeline0/GstV4l2Src:v4l2src0:
system error: No such file or directory
Setting pipeline to NULL …
Freeing pipeline …

Does anybody have any suggestion how to make tc358743 work?

Hi
Please reference to below linke, and you also rearch “tc358743” in this forum to get more information.

http://developer.ridgerun.com/wiki/index.php?title=Toshiba_TC358743_Linux_driver_for_Tegra_X1

Hi,

Thank You for your answer.

This reference is for kernel source l4t-r23.2. Do i need to apply the same patches if I use kernel source l4t-r28.1?

I would like suggest you use r23.2 to verify the HW first. Then try research for r28.1

Hi,

I’m in trouble connecting B102 and TX1. we try jetpack 3.1, kernel 4.4 to install driver tc358743.
When i try: “modprobe tc358743” i get no error message but still dont see /dev/video0 in list device.

Is there another way to connect B102 and TX1?

Please build the tc358743 as build in module and need implement device tree for this device. Please reference to the sensor programing guide to know how to add your device to the dtb.

Hi,

I’m very new in building kernel module. Please show me some reference links.

Currently, i’m using Jetson TX1, carrier board J100, JetPack 3.1 and try to connect to B102 rev2.

Thanks.

Hi,

I asked RidgeRun about how to install tc358743 driver on TX1. They said i would have to pay $2499 to get support to install the driver (include the patches for tc358743) like in reference link [url]http://developer.ridgerun.com/wiki/index.php?title=Toshiba_TC358743_Linux_driver_for_Tegra_X1[/url]

I know that linux Kernel 4.4.38 has driver for tc358743 (named “TC358743 decoder”). But I failed to install the driver.

Have you successful connect J100 with B102 rev2? Do i have to contact with RidgeRun for driver support?

Seems they driver only support JetPack 2.3(k310), for the k4.4 may need develop new driver for it. It’s better check if they have implement the k4.4 driver.

Now i have installed driver TC358743 on TX1, Jetpack 3.1, kernel 4.4.38.

When i ran “modprobe tc358743” it return no error.

I can detect i2c address of B102 but can not get data from B102.

I checked Jetpack 2.3.1, it’s kernel version is 3.10.96 does not contain driver tc358743.

May be i did something wrong.

Can you share the link to download JetPack 2.3(k310) and the kernel source contain driver tc358743?

Thanks.

You can download the Jetpack and source from Jetson Download Center | NVIDIA Developer
But we don’t have tc358743 driver either because the reference board didn’t have it.

Let me check it again.

Thanks for reply.

By porting TC358743 driver from kernel 4.4.38 to kernel 3.10.96 in jetpack 3.0 replace camera platform device tree with new tc358743 device tree file. I can get data from B102 v2 but it only generate still image, not video. Do anybody have suggestion for me?
Here is my driver and my device tree for J100 connects B101, B102
Device tree source tegra210-tc358743.dtsi

/*
 * Copyright (c) 2015-2016, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <dt-bindings/media/camera.h>
#include <dt-bindings/platform/t210/t210.h>
#include <dt-bindings/gpio/gpio.h>

/ {
    host1x {
        vi_base: vi {
            num-channels = <4>;
            ports {
                #address-cells = <1>;
                #size-cells = <0>;
                vi_port0: port@0 {
                    status = "okay";
                    reg = <0>;
                    tc358743_vi_in0: endpoint {
                        status = "okay";
                        csi-port = <0>; /* CSI-A */
                        bus-width = <2>; /* Use CSI-A */
                        remote-endpoint = <&tc358743_out0>;
                    };
                };
                vi_port1: port@1 {
                    status = "okay";
                    reg = <1>;
                    tc358743_vi_in1: endpoint {
                        status = "okay";
                        csi-port = <1>;  /* CSI-B */
                        bus-width = <2>; /* Use CSI-B only */
                        remote-endpoint = <&tc358743_out1>;
                    };
                };
                vi_port2: port@2 {
                    status = "okay";
                    reg = <2>;
                    tc358743_vi_in2: endpoint {
                        status = "okay";
                        csi-port = <2>;  /* CSI-C */
                        bus-width = <4>; /* Use CSI-CD*/
                        remote-endpoint = <&tc358743_out2>;
                    };
                };
                vi_port3: port@3 {
                    status = "okay";
                    reg = <3>;
                    tc358743_vi_in3: endpoint {
                        status = "okay";
                        csi-port = <4>;  /* CSI-E */
                        bus-width = <4>; /* Use CSI-EF only */
                        remote-endpoint = <&tc358743_out3>;
                    };
                };
                
            };
        };
        i2c@546c0000 {  /* I2C_PM, "adapter" 6 */
            status = "okay";
            #address-cells = <1>;
            #size-cells = <0>;
            tc358743_b@0f {
                status = "okay";
                compatible = "tc358743";
                reg = <0x0f>; /* shifted by 2 */
                mclk = "cam_mclk1";
                reset-gpios = <&gpio 151 0>;
                refclk_hz = <27000000>;
                /* Physical dimensions of sensor */
                physical_w = "4.713";
                physical_h = "3.494";
                /* Sensor Model */
                sensor_model ="tc358743";

                ports {
                    #address-cells = <1>;
                    #size-cells = <0>;

                    port@0 {
                        reg = <0>;
                        tc358743_out1: endpoint {
                            csi-port = <1>; /* CSI B */
                            bus-width = <2>; /* Use CSI-B only */
                            data-lanes = <1 2>;
                            clock-lanes = <0>;
                            clock-noncontinuous;
                            link-frequencies = /bits/ 64 <297000000>;
                            remote-endpoint = <&tc358743_vi_in1>;
                        };
                    };
                };
            };
        };
    };
    
    i2c@7000c400 {  /* I2C_PM, "adapter" 1 */
        status = "okay";
        #address-cells = <1>;
        #size-cells = <0>;
        tc358743_a@0f {
            status = "okay";
            compatible = "tc358743";
            reg = <0x0f>; /* shifted by 2 */
            mclk = "cam_mclk1";
            reset-gpios = <&gpio 152 0>;
            refclk_hz = <27000000>;
            /* Physical dimensions of sensor */
            physical_w = "4.713";
            physical_h = "3.494";
            /* Sensor Model */
            sensor_model ="tc358743";

            ports {
                #address-cells = <1>;
                #size-cells = <0>;

                port@0 {
                    reg = <0>;
                    tc358743_out0: endpoint {
                        csi-port = <0>; /* CSI A */
                        bus-width = <2>; /* Use CSI-A only */
                        data-lanes = <1 2>;
                        clock-lanes = <0>;
                        clock-noncontinuous;
                        link-frequencies = /bits/ 64 <297000000>;
                        remote-endpoint = <&tc358743_vi_in0>;
                    };
                };
            };
        };
    };
    
    i2c@7000c000 {  /* I2C_0, "adapter" 0 */
        status = "okay";
        #address-cells = <1>;
        #size-cells = <0>;
        tc358743_cd@0f {
            status = "okay";
            compatible = "tc358743";
            reg = <0x0f>; /* (normal = address not shifted) */
            mclk = "cam_mclk1";
            reset-gpios = <&gpio 148 0>;
            refclk_hz = <27000000>;
            /* Physical dimensions of sensor */
            physical_w = "4.713";
            physical_h = "3.494";
            /* Sensor Model */
            sensor_model ="tc358743";

            ports {
                #address-cells = <1>;
                #size-cells = <0>;

                port@0 {
                    reg = <0>;
                    tc358743_out2: endpoint {
                        csi-port = <2>;  /* CSI C */
                        bus-width = <4>; /* Use CSI-CD */
                        data-lanes = <1 2 3 4>;
                        clock-lanes = <0>;
                        clock-noncontinuous;
                        link-frequencies = /bits/ 64 <297000000>;
                        remote-endpoint = <&tc358743_vi_in2>;
                    };
                };
            };
        };
    };

i2c@7000c500 {  /* I2C_PM, "adapter" 2 */
        status = "okay";
        #address-cells = <1>;
        #size-cells = <0>;
        tc358743_ef@0f {
            status = "okay";
            compatible = "tc358743";
            reg = <0x0f>; /* (normal = address not shifted) */
            mclk = "cam_mclk1";
            reset-gpios = <&gpio 149 0>;
            refclk_hz = <27000000>;
            /* Physical dimensions of sensor */
            physical_w = "4.713";
            physical_h = "3.494";
            /* Sensor Model */
            sensor_model ="tc358743";

            ports {
                #address-cells = <1>;
                #size-cells = <0>;

                port@0 {
                    reg = <0>;
                    tc358743_out3: endpoint {
                        csi-port = <4>;  /* CSI EF */
                        bus-width = <4>; /* Use CSI-EF */
                        data-lanes = <1 2 3 4>;
                        clock-lanes = <0>;
                        clock-noncontinuous;
                        link-frequencies = /bits/ 64 <297000000>;
                        remote-endpoint = <&tc358743_vi_in3>;
                    };
                };
            };
        };
        
    };
    tcp: tegra-camera-platform {
	    status = "okay";
		compatible = "nvidia, tegra-camera-platform";
		num_csi_lanes = <12>;
		max_lane_speed = <1500000>;
		min_bits_per_pixel = <16>;
		vi_peak_byte_per_pixel = <2>;
		vi_bw_margin_pct = <25>;
		max_pixel_rate = <408000>;
		isp_peak_byte_per_pixel = <2>;
		isp_bw_margin_pct = <25>;

	    /**
		* The general guideline for naming badge_info contains 3 parts, and is as follows,
		* The first part is the camera_board_id for the module; if the module is in a FFD
		* platform, then use the platform name for this part.
		* The second part contains the position of the module, ex. “rear” or “front”.
		* The third part contains the last 6 characters of a part number which is found
		* in the module's specsheet from the vender.
		*/
		modules {
			module0 {
                status = "okay";
                badge = "tc358743_top_i2c1_a";
				position = "top";
				orientation = "3";
				drivernode0 {
                    status = "okay";
                    /* Declare PCL support driver (classically known as guid)  */
					pcl_id = "v4l2_sensor";
					/* Driver's v4l2 device name */
					devname = "tc358743 1-000f";
					/* Declare the device-tree hierarchy to driver instance */
					proc-device-tree = "/proc/device-tree/i2c@70004000/tc358743_a@0f";
				};
			};
            module1 {
                status = "okay";
                badge = "tc358743_top_i2c6_b";
                position = "top";
                orientation = "3";
                drivernode0 {
                    status = "okay";
                    /* Declare PCL support driver (classically known as guid)  */
                    pcl_id = "v4l2_sensor";
                    /* Driver's v4l2 device name */
                    devname = "tc358743 6-000f";
                    /* Declare the device-tree hierarchy to driver instance */
                    proc-device-tree = "/proc/device-tree/host1x/i2c@546c0000/tc358743_b@0f";
                };
            };
            module2 {
                status = "okay";
                badge = "tc358743_top_i2c0_cd";
                position = "top";
                orientation = "3";
                drivernode0 {
                    status = "okay";
                    /* Declare PCL support driver (classically known as guid)  */
                    pcl_id = "v4l2_sensor";
                    /* Driver's v4l2 device name */
                    devname = "tc358743 0-000f";
                    /* Declare the device-tree hierarchy to driver instance */
                    proc-device-tree = "/proc/device-tree/i2c@7000c000/tc358743_cd@0f";
                };
                
            };
            
            module3 {
                status = "okay";
                badge = "tc358743_top_i2c2_ef";
                position = "top";
                orientation = "3";
                drivernode0 {
                    status = "okay";
                    /* Declare PCL support driver (classically known as guid)  */
                    pcl_id = "v4l2_sensor";
                    /* Driver's v4l2 device name */
                    devname = "tc358743 2-000f";
                    /* Declare the device-tree hierarchy to driver instance */
                    proc-device-tree = "/proc/device-tree/i2c@7000c500/tc358743_ef@0f";
                };
            };
		};
	};
};

Driver source tc358743.c

[code]/*

  • References (c = chapter, p = page):
  • REF_01 - Toshiba, TC358743XBG (H2C), Functional Specification, Rev 0.60
  • REF_02 - Toshiba, TC358743XBG_HDMI-CSI_Tv11p_nm.xls
    */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/videodev2.h>
#include <linux/workqueue.h>
#include <linux/v4l2-dv-timings.h>
#include <linux/hdmi.h>
#include <media/v4l2-dv-timings.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-event.h>
#include <media/v4l2-of.h>
#include <media/camera_common.h>
#include <media/i2c/tc358743.h>

#include <dt-bindings/gpio/tegra-gpio.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/gpio.h>
#include <linux/module.h>

#include <linux/seq_file.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>

#include <linux/i2c-dev.h>
#include <linux/fs.h>

#include <media/v4l2-chip-ident.h>
#include <media/camera_common.h>
#include <media/soc_camera.h>

#include “tc358743_regs.h”

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, “debug level (0-3)”);

MODULE_DESCRIPTION(“Toshiba TC358743 HDMI to CSI-2 bridge driver”);
MODULE_AUTHOR(“Ramakrishnan Muthukrishnan ram@rkrishnan.org”);
MODULE_AUTHOR(“Mikhail Khelik mkhelik@cisco.com”);
MODULE_AUTHOR(“Mats Randgaard matrandg@cisco.com”);
MODULE_LICENSE(“GPL”);

/* mode */
enum {
tc358743_MODE_1280X720,
tc358743_MODE_1920X1080,
};

/* frame rate */
static const int tc358743_30fps = {
30,
};
static const int tc358743_30_60fps = {
30,
60,
};

/* frame format */
static const struct camera_common_frmfmt tc358743_frmfmt = {
{{1280, 720}, tc358743_30_60fps, 2, 1, tc358743_MODE_1280X720},
{{1920, 1080}, tc358743_30_60fps, 2, 1, tc358743_MODE_1920X1080},
};

#define EDID_NUM_BLOCKS_MAX 8
#define EDID_BLOCK_SIZE 128
#define TC358743_VOUT_RGB
static u8 edid = {
/* RGB ouput selection */

#ifdef TC358743_VOUT_RGB
0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,
0x50,0x21,0x9C,0x27,0x00,0x00,0x00,0x00,
0x19,0x12,0x01,0x03,0x80,0x00,0x00,0x78,
0x0E,0x00,0xB2,0xA0,0x57,0x49,0x9B,0x26,
0x10,0x48,0x4F,0x2F,0xCF,0x00,0x31,0x59,
0x45,0x59,0x61,0x59,0x81,0x99,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x02,0x3A,
0x80,0x18,0x71,0x38,0x2D,0x40,0x58,0x2C,
0x46,0x00,0x00,0x00,0x00,0x00,0x00,0x1E,
0x00,0x00,0x00,0xFD,0x00,0x31,0x55,0x18,
0x5E,0x11,0x00,0x0A,0x20,0x20,0x20,0x20,
0x20,0x20,0x00,0x00,0x00,0xFC,0x00,0x54,
0x6F,0x73,0x68,0x69,0x62,0x61,0x2D,0x48,
0x32,0x43,0x0A,0x20,0x00,0x00,0x00,0xFD,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x01,0xc3,
0x02,0x03,0x1a,0xc0,0x48,0xa2,0x10,0x04,
0x02,0x01,0x21,0x14,0x13,0x23,0x09,0x07,
0x07,0x65,0x03,0x0c,0x00,0x10,0x00,0xe2,
0x00,0x2a,0x01,0x1d,0x00,0x80,0x51,0xd0,
0x1c,0x20,0x40,0x80,0x35,0x00,0x00,0x00,
0x00,0x00,0x00,0x1e,0x8c,0x0a,0xd0,0x8a,
0x20,0xe0,0x2d,0x10,0x10,0x3e,0x96,0x00,
0x00,0x00,0x00,0x00,0x00,0x18,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xd7
#else
0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,
0x52,0x62,0x88,0x88,0x00,0x88,0x88,0x88,
0x1C,0x15,0x01,0x03,0x80,0x00,0x00,0x78,
0x0A,0x0D,0xC9,0xA0,0x57,0x47,0x98,0x27,
0x12,0x48,0x4C,0x00,0x00,0x00,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,0x01,0x01,0x02,0x3A,
0x80,0xD0,0x72,0x38,0x2D,0x40,0x10,0x2C,
0x45,0x80,0x66,0x4C,0x00,0x00,0x00,0x1E,
0x01,0x1D,0x00,0xBC,0x52,0xD0,0x1E,0x20,
0xB8,0x28,0x55,0x40,0x66,0x4C,0x00,0x00,
0x00,0x1E,0x00,0x00,0x00,0xFC,0x00,0x54,
0x6F,0x73,0x68,0x69,0x62,0x61,0x2D,0x48,
0x32,0x43,0x0A,0x20,0x00,0x00,0x00,0xFD,
0x00,0x14,0x78,0x01,0xFF,0x10,0x00,0x0A,
0x20,0x20,0x20,0x20,0x20,0x20,0x00,0xBA,
0x02,0x03,0x1A,0x71,0x47,0x9F,0x13,0x22,
0x1F,0x02,0x11,0x1F,0x23,0x09,0x07,0x01,
0x83,0x01,0x00,0x00,0x65,0x03,0x0C,0x00,
0x10,0x00,0x01,0x1D,0x80,0x18,0x71,0x38,
0x2D,0x40,0x58,0x2C,0x45,0x00,0x66,0x4C,
0x00,0x00,0x00,0x1E,0x02,0x3A,0x80,0xD0,
0x72,0x38,0x2D,0x40,0x10,0x2C,0x45,0x80,
0x66,0x4C,0x00,0x00,0x00,0x1E,0x8C,0x0A,
0xD0,0x8A,0x20,0xE0,0x2D,0x10,0x10,0x3E,
0x96,0x00,0x66,0x4C,0x00,0x00,0x00,0x18,
0x8C,0x0A,0xD0,0x90,0x20,0x40,0x31,0x20,
0x0C,0x40,0x55,0x00,0x66,0x4C,0x00,0x00,
0x00,0x18,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,
#endif
};
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE (EDID_NUM_BLOCKS_MAX * EDID_BLOCK_SIZE + 2)

static const struct v4l2_dv_timings_cap tc358743_timings_cap = {
.type = V4L2_DV_BT_656_1120,
/* keep this initialization for compatibility with GCC < 4.4.6 /
.reserved = { 0 },
/
Pixel clock from REF_01 p. 20. Min/max height/width are unknown */
V4L2_INIT_BT_TIMINGS(1, 10000, 1, 10000, 0, 165000000,
V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
V4L2_DV_BT_CAP_PROGRESSIVE |
V4L2_DV_BT_CAP_REDUCED_BLANKING |
V4L2_DV_BT_CAP_CUSTOM)
};

struct tc358743_state {
struct tc358743_platform_data pdata;
struct v4l2_of_bus_mipi_csi2 bus;
struct v4l2_subdev sd;
struct media_pad pad;
struct v4l2_ctrl_handler hdl;
struct i2c_client *i2c_client;
struct regmap regmap;
/
CONFCTL is modified in ops and tc358743_hdmi_sys_int_handler */
struct mutex confctl_mutex;

/* controls */
struct v4l2_ctrl *detect_tx_5v_ctrl;
struct v4l2_ctrl *audio_sampling_rate_ctrl;
struct v4l2_ctrl *audio_present_ctrl;

/* work queues */
struct workqueue_struct *work_queues;
struct delayed_work delayed_work_enable_hotplug;

/* edid  */
u8 edid_blocks_written;

/* used by i2c_wr() */
u8 wr_data[MAX_XFER_SIZE];

struct v4l2_dv_timings timings;
u32 mbus_fmt_code;

struct gpio_desc *reset_gpio;

};

static inline struct tc358743_state *to_state(struct v4l2_subdev sd)
{
return container_of(sd, struct tc358743_state, sd);
}
/

static char * sdo_bit_len = {
[0b000] = “16bit (lower 8bit discarded)”,
[0b001] = “16bit (lower 8bit + 1 discarded)”,
[0b010] = “18bit (lower 6bit discarded)”,
[0b011] = “18bit (lower 6bit + 1 discarded)”,
[0b100] = “20bit (lower 4bit discarded)”,
[0b101] = “20bit (lower 4bit + 1 discarded)”,
[0b110] = “24bit no rounding”,
[0b111] = “Output OFF (Mute)”,
};

static char * sdo_fmt = {
[MASK_SDO_FMT_RIGHT] = “Right justified”,
[MASK_SDO_FMT_LEFT] = “Left justified”,
[MASK_SDO_FMT_I2S] = “I2S”,
[0b011] = “I2S”,
};

static char * no_yes = {
[0] = “No”,
[1] = “Yes”,
};

static char * no_with = {
[0] = “No”,
[1] = “With”,
};

static char * off_on = {
[0b000] = “Off”,
[0b001] = “On”,
};

static char * audout_sel = {
[0b00] = “CSI2-TX”,
[0b01] = “Reseved”,
[0b10] = “I2S”,
[0b11] = “TDM”,
};
/
/
--------------- I2C --------------- */
static int i2c_rd(struct v4l2_subdev *sd, u16 reg, u8 *values, u32 n)
{
struct tc358743_state *state = to_state(sd);
struct i2c_client *client = state->i2c_client;
int err;
u8 buf[2] = { reg >> 8, reg &0xff };
struct i2c_msg msgs = {
{
.addr = client->addr,
.flags = 0,
.len = 2,
.buf = buf,
},
{
.addr = client->addr,
.flags = I2C_M_RD,
.len = n,
.buf = values,
},
};

err = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (err != ARRAY_SIZE(msgs)) {
	v4l2_err(sd, "%s: #### reading register0x%x from0x%x failed\n",
			__func__, reg, client->addr);
	return -1;
}
//udelay(10);
return 0;

}

static int i2c_wr(struct v4l2_subdev *sd, u16 reg, u8 *values, u32 n)
{
struct tc358743_state *state = to_state(sd);
struct i2c_client *client = state->i2c_client;
u8 *data = state->wr_data;
int err, i;
struct i2c_msg msg;

if ((2 + n) > sizeof(state->wr_data)){
	v4l2_warn(sd, "i2c wr reg=%04x: len=%d is too big!\n",
		  reg, 2 + n);
	return -1;
}

msg.addr = client->addr;
msg.buf = data;
msg.len = 2 + n;
msg.flags = 0;

data[0] = reg >> 8;
data[1] = reg &0xff;

for (i = 0; i < n; i++)
	data[2 + i] = values[i];

err = i2c_transfer(client->adapter, &msg, 1);
if (err != 1) {
	v4l2_err(sd, "%s: writing register0x%x from0x%x failed\n",
			__func__, reg, client->addr);
	return -1;
}
return 0;

}
static u8 i2c_rd8(struct v4l2_subdev *sd, u16 reg)
{
u8 val;

i2c_rd(sd, reg, &val, 1);

return val;

}

static void i2c_wr8(struct v4l2_subdev *sd, u16 reg, u8 val)
{
i2c_wr(sd, reg, &val, 1);
}

static void i2c_wr8_and_or(struct v4l2_subdev *sd, u16 reg, u8 mask, u8 val)
{
i2c_wr8(sd, reg, (i2c_rd8(sd, reg) & mask) | val);
}

static u16 i2c_rd16(struct v4l2_subdev *sd, u16 reg)
{
u16 val;

i2c_rd(sd, reg, (u8 *)&val, 2);

return val;

}

static void i2c_wr16(struct v4l2_subdev *sd, u16 reg, u16 val)
{
i2c_wr(sd, reg, (u8 *)&val, 2);
}

static void i2c_wr16_and_or(struct v4l2_subdev *sd, u16 reg, u16 mask, u16 val)
{
i2c_wr16(sd, reg, (i2c_rd16(sd, reg) & mask) | val);
}

static u32 i2c_rd32(struct v4l2_subdev *sd, u16 reg)
{
u32 val;

i2c_rd(sd, reg, (u8 *)&val, 4);

return val;

}

static void i2c_wr32(struct v4l2_subdev *sd, u16 reg, u32 val)
{
i2c_wr(sd, reg, (u8 )&val, 4);
}
/
--------------- STATUS --------------- */

static inline bool is_hdmi(struct v4l2_subdev *sd)
{
return i2c_rd8(sd, SYS_STATUS) & MASK_S_HDMI;
}

static inline bool tx_5v_power_present(struct v4l2_subdev *sd)
{
return i2c_rd8(sd, SYS_STATUS) & MASK_S_DDC5V;
}

static inline bool no_signal(struct v4l2_subdev *sd)
{
return !(i2c_rd8(sd, SYS_STATUS) & MASK_S_TMDS);
}

static inline bool no_sync(struct v4l2_subdev *sd)
{
return !(i2c_rd8(sd, SYS_STATUS) & MASK_S_SYNC);
}

static inline bool audio_present(struct v4l2_subdev *sd)
{
return i2c_rd8(sd, AU_STATUS0) & MASK_S_A_SAMPLE;
}

static int get_audio_sampling_rate(struct v4l2_subdev *sd)
{
static const int code_to_rate = {
44100, 0, 48000, 32000, 22050, 384000, 24000, 352800,
88200, 768000, 96000, 705600, 176400, 0, 192000, 0
};

/* Register FS_SET is not cleared when the cable is disconnected */
if (no_signal(sd))
	return 0;

return code_to_rate[i2c_rd8(sd, FS_SET) & MASK_FS];

}

static unsigned tc358743_num_csi_lanes_in_use(struct v4l2_subdev *sd)
{
return ((i2c_rd32(sd, CSI_CONTROL) & MASK_NOL) >> 1) + 1;
}

/* --------------- TIMINGS --------------- */

static inline unsigned fps(const struct v4l2_bt_timings *t)
{
if (!V4L2_DV_BT_FRAME_HEIGHT(t) || !V4L2_DV_BT_FRAME_WIDTH(t))
return 0;

return DIV_ROUND_CLOSEST((unsigned)t->pixelclock,
		V4L2_DV_BT_FRAME_HEIGHT(t) * V4L2_DV_BT_FRAME_WIDTH(t));

}

static int tc358743_get_detected_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct v4l2_bt_timings *bt = &timings->bt;
unsigned width, height, frame_width, frame_height, frame_interval, fps;

memset(timings, 0, sizeof(struct v4l2_dv_timings));

if (no_signal(sd)) {
	v4l2_info(sd, "%s: no valid signal\n", __func__);
	return -ENOLINK;
}
if (no_sync(sd)) {
	v4l2_info(sd, "%s: no sync on signal\n", __func__);
	return -ENOLCK;
}

timings->type = V4L2_DV_BT_656_1120;
bt->interlaced = i2c_rd8(sd, VI_STATUS1) & MASK_S_V_INTERLACE ?
	V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;

width = ((i2c_rd8(sd, DE_WIDTH_H_HI) &0x1f) << 8) +
	i2c_rd8(sd, DE_WIDTH_H_LO);
height = ((i2c_rd8(sd, DE_WIDTH_V_HI) &0x1f) << 8) +
	i2c_rd8(sd, DE_WIDTH_V_LO);
frame_width = ((i2c_rd8(sd, H_SIZE_HI) &0x1f) << 8) +
	i2c_rd8(sd, H_SIZE_LO);
frame_height = (((i2c_rd8(sd, V_SIZE_HI) &0x3f) << 8) +
	i2c_rd8(sd, V_SIZE_LO)) / 2;
/* frame interval in milliseconds * 10
 * Require SYS_FREQ0 and SYS_FREQ1 are precisely set */
frame_interval = ((i2c_rd8(sd, FV_CNT_HI) &0x3) << 8) +
	i2c_rd8(sd, FV_CNT_LO);
fps = (frame_interval > 0) ?
	DIV_ROUND_CLOSEST(10000, frame_interval) : 0;

bt->width = width;
bt->height = height;
bt->vsync = frame_height - height;
bt->hsync = frame_width - width;
bt->pixelclock = frame_width * frame_height * fps;
if (bt->interlaced == V4L2_DV_INTERLACED) {
	bt->height *= 2;
	bt->il_vsync = bt->vsync + 1;
	bt->pixelclock /= 2;
}
v4l2_info(sd,"%d:%s: width %d heigh %d interlaced %d\n",__LINE__,__FUNCTION__,		
        bt->width,		
        bt->height,		
        bt->interlaced);
return 0;

}
/* --------------- HOTPLUG / HDCP / EDID --------------- */

static void tc358743_delayed_work_enable_hotplug(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct tc358743_state *state = container_of(dwork,
struct tc358743_state, delayed_work_enable_hotplug);
struct v4l2_subdev *sd = &state->sd;

v4l2_info(sd, "%s:\n", __func__);


i2c_wr8_and_or(sd, HPD_CTL, ~MASK_HPD_OUT0, MASK_HPD_OUT0);
/*hainh 
i2c_wr8_and_or(sd, HPD_CTL, ~MASK_HPD_CTL0, MASK_HPD_CTL0);
*/

}

static void tc358743_set_hdmi_hdcp(struct v4l2_subdev *sd, bool enable)
{
v4l2_info(sd, “%s: %s\n”, func, enable ?
“enable” : “disable”);

i2c_wr8_and_or(sd, HDCP_REG1,
		~(MASK_AUTH_UNAUTH_SEL | MASK_AUTH_UNAUTH),
		MASK_AUTH_UNAUTH_SEL_16_FRAMES | MASK_AUTH_UNAUTH_AUTO);

i2c_wr8_and_or(sd, HDCP_REG2, ~MASK_AUTO_P3_RESET,
		SET_AUTO_P3_RESET_FRAMES(0x0f));

/* HDCP is disabled by configuring the receiver as HDCP repeater. The
 * repeater mode require software support to work, so HDCP
 * authentication will fail. */
i2c_wr8_and_or(sd, HDCP_REG3, ~KEY_RD_CMD, enable ? KEY_RD_CMD : 0);
i2c_wr8_and_or(sd, HDCP_MODE, ~(MASK_AUTO_CLR | MASK_MODE_RST_TN),
		enable ?  (MASK_AUTO_CLR | MASK_MODE_RST_TN) : 0);

/* Apple MacBook Pro gen.8 has a bug that makes it freeze every fifth
 * second when HDCP is disabled, but the MAX_EXCED bit is handled
 * correctly and HDCP is disabled on the HDMI output. */
i2c_wr8_and_or(sd, BSTATUS1, ~MASK_MAX_EXCED,
		enable ? 0 : MASK_MAX_EXCED);
i2c_wr8_and_or(sd, BCAPS, ~(MASK_REPEATER | MASK_READY),
		enable ? 0 : MASK_REPEATER | MASK_READY);

}

static void tc358743_disable_edid(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);

v4l2_info(sd, "%s:\n", __func__);

cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);

/* DDC access to EDID is also disabled when hotplug is disabled. See
 * register DDC_CTL */
i2c_wr8_and_or(sd, HPD_CTL, ~MASK_HPD_OUT0,0x0);

}

static void tc358743_erase_bksv(struct v4l2_subdev *sd)
{
int i;

for (i = 0; i < 5; i++)
	i2c_wr8(sd, BKSV + i, 0);

}

/* --------------- AVI infoframe --------------- */

static void print_avi_infoframe(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct device *dev = &client->dev;
union hdmi_infoframe frame;
u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];

if (!is_hdmi(sd)) {
	v4l2_info(sd, "DVI-D signal - AVI infoframe not supported\n");
	return;
}

i2c_rd(sd, PK_AVI_0HEAD, buffer, HDMI_INFOFRAME_SIZE(AVI));

if (hdmi_infoframe_unpack(&frame, buffer) < 0) {
	v4l2_err(sd, "%s: unpack of AVI infoframe failed\n", __func__);
	return;
}

hdmi_infoframe_log(KERN_INFO, dev, &frame);

}

/* --------------- CTRLS --------------- */

static int tc358743_s_ctrl_detect_tx_5v(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);

return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
		tx_5v_power_present(sd));

}

static int tc358743_s_ctrl_audio_sampling_rate(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);

return v4l2_ctrl_s_ctrl(state->audio_sampling_rate_ctrl,
		get_audio_sampling_rate(sd));

}

static int tc358743_s_ctrl_audio_present(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);

return v4l2_ctrl_s_ctrl(state->audio_present_ctrl, audio_present(sd));

}

static int tc358743_update_controls(struct v4l2_subdev *sd)
{
int ret = 0;

ret |= tc358743_s_ctrl_detect_tx_5v(sd);
ret |= tc358743_s_ctrl_audio_sampling_rate(sd);
ret |= tc358743_s_ctrl_audio_present(sd);

return ret;

}
static unsigned tc358743_num_csi_lanes_needed(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct v4l2_bt_timings *bt = &state->timings.bt;
struct tc358743_platform_data *pdata = &state->pdata;
u32 bits_pr_pixel =
(state->mbus_fmt_code == MEDIA_BUS_FMT_UYVY8_1X16) ? 16 : 24;
u32 bps = bt->width * bt->height * fps(bt) * bits_pr_pixel;
u32 bps_pr_lane = (pdata->refclk_hz / pdata->pll_prd) * pdata->pll_fbd;

return DIV_ROUND_UP(bps, bps_pr_lane);

}
static int tc358743_get_edid(struct v4l2_subdev *sd){
//static int i2c_rd(struct v4l2_subdev *sd, u16 reg, u8 *values, u32 n)
int i = 0;
u8 edid_read[256];
int result = 0;
u32 n = sizeof(edid_read);

result = i2c_rd(sd,EDID_RAM,edid_read,n);
v4l2_info(sd, "%s i2c_rd return %d\r\n",__func__,result);
for(i = 0; i< n;i++)
	printk("%02x ",edid_read[i]);
v4l2_info(sd, "%s done\r\n",__func__);
return 0;

}
static int tc358743_log_status(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct v4l2_dv_timings timings;
uint8_t hdmi_sys_status = i2c_rd8(sd, SYS_STATUS);
uint16_t sysctl = i2c_rd16(sd, SYSCTL);
u8 vi_status3 = i2c_rd8(sd, VI_STATUS3);
u8 vi_rep = i2c_rd8(sd, VI_REP);
const int deep_color_mode[4] = { 8, 10, 12, 16 };
static const char * const input_color_space = {
“RGB”, “YCbCr 601”, “Adobe RGB”, “YCbCr 709”, “NA (4)”,
“xvYCC 601”, “NA(6)”, “xvYCC 709”, “NA(8)”, “sYCC601”,
“NA(10)”, “NA(11)”, “NA(12)”, “Adobe YCC 601”};
static const char * const output_color_space[8] = {
“full range (0-255)”, “limited range (16-235)”,
“Bt.601 (0-255)”, “Bt.601 (16-235)”,
“Bt.709 (0-255)”, “Bt.709 (16-235)”,
“full to limited range”, “limited to full range”};
//tc358743_get_edid(sd);

v4l2_info(sd, "%s hainh35 LOG VOUT_SET2=0x%02x,VI_REP=0x%02x\n", __func__,
	i2c_rd8(sd,VOUT_SET2),
	i2c_rd8(sd,VI_REP));
v4l2_info(sd, "-----Chip status-----\n");
v4l2_info(sd, "Chip ID:0x%02x\n",
		(i2c_rd16(sd, CHIPID) & MASK_CHIPID) >> 8);
v4l2_info(sd, "Chip revision:0x%02x\n",
		i2c_rd16(sd, CHIPID) & MASK_REVID);
v4l2_info(sd, "Reset: IR: %d, CEC: %d, CSI TX: %d, HDMI: %d\n",
		!!(sysctl & MASK_IRRST),
		!!(sysctl & MASK_CECRST),
		!!(sysctl & MASK_CTXRST),
		!!(sysctl & MASK_HDMIRST));
v4l2_info(sd, "Sleep mode: %s\n", sysctl & MASK_SLEEP ? "on" : "off");
v4l2_info(sd, "Cable detected (+5V power): %s\n",
		hdmi_sys_status & MASK_S_DDC5V ? "yes" : "no");
v4l2_info(sd, "DDC lines enabled: %s\n",
		(i2c_rd8(sd, EDID_MODE) & MASK_EDID_MODE_E_DDC) ?
		"yes" : "no");
v4l2_info(sd, "Hotplug enabled: %s\n",
		(i2c_rd8(sd, HPD_CTL) & MASK_HPD_OUT0) ?
		"yes" : "no");
v4l2_info(sd, "CEC enabled: %s\n",
		(i2c_rd16(sd, CECEN) & MASK_CECEN) ?  "yes" : "no");
v4l2_info(sd, "-----Signal status-----\n");
v4l2_info(sd, "TMDS signal detected: %s\n",
		hdmi_sys_status & MASK_S_TMDS ? "yes" : "no");
v4l2_info(sd, "Stable sync signal: %s\n",
		hdmi_sys_status & MASK_S_SYNC ? "yes" : "no");
v4l2_info(sd, "PHY PLL locked: %s\n",
		hdmi_sys_status & MASK_S_PHY_PLL ? "yes" : "no");
v4l2_info(sd, "PHY DE detected: %s\n",
		hdmi_sys_status & MASK_S_PHY_SCDT ? "yes" : "no");

if (tc358743_get_detected_timings(sd, &timings)) {
	v4l2_info(sd, "No video detected\n");
} else {
	v4l2_print_dv_timings(sd->name, "Detected format: ", &timings, true);
}
v4l2_print_dv_timings(sd->name, "Configured format: ", &state->timings, true);

v4l2_info(sd, "-----CSI-TX status-----\n");
v4l2_info(sd, "Lanes needed: %d\n",
		tc358743_num_csi_lanes_needed(sd));
v4l2_info(sd, "Lanes in use: %d\n",
		tc358743_num_csi_lanes_in_use(sd));
v4l2_info(sd, "Waiting for particular sync signal: %s\n",
		(i2c_rd16(sd, CSI_STATUS) & MASK_S_WSYNC) ?
		"yes" : "no");
v4l2_info(sd, "Transmit mode: %s\n",
		(i2c_rd16(sd, CSI_STATUS) & MASK_S_TXACT) ?
		"yes" : "no");
v4l2_info(sd, "Receive mode: %s\n",
		(i2c_rd16(sd, CSI_STATUS) & MASK_S_RXACT) ?
		"yes" : "no");
v4l2_info(sd, "Stopped: %s\n",
		(i2c_rd16(sd, CSI_STATUS) & MASK_S_HLT) ?
		"yes" : "no");
v4l2_info(sd, "Color space: %s %s\n",
		state->mbus_fmt_code == MEDIA_BUS_FMT_UYVY8_1X16 ?
		"YCbCr 422 16-bit" :
		state->mbus_fmt_code == MEDIA_BUS_FMT_RGB888_1X24 ?
		"RGB 888 24-bit" : "Unsupported",
		output_color_space[(vi_rep & MASK_VOUT_COLOR_SEL) >> 5]);

v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
v4l2_info(sd, "HDCP encrypted content: %s\n",
		hdmi_sys_status & MASK_S_HDCP ? "yes" : "no");
v4l2_info(sd, "Input color space: %s %s range\n",
		input_color_space[(vi_status3 & MASK_S_V_COLOR) >> 1],
		(vi_status3 & MASK_LIMITED) ? "limited" : "full");
if (!is_hdmi(sd))
	return 0;
v4l2_info(sd, "AV Mute: %s\n", hdmi_sys_status & MASK_S_AVMUTE ? "on" :
		"off");
v4l2_info(sd, "Deep color mode: %d-bits per channel\n",
		deep_color_mode[(i2c_rd8(sd, VI_STATUS1) &
			MASK_S_DEEPCOLOR) >> 2]);
print_avi_infoframe(sd);

return 0;

}

/* --------------- INIT --------------- */

static void tc358743_reset_phy(struct v4l2_subdev *sd)
{
v4l2_info(sd, “%s:\n”, func);

i2c_wr8_and_or(sd, PHY_RST, ~MASK_RESET_CTRL, 0);
i2c_wr8_and_or(sd, PHY_RST, ~MASK_RESET_CTRL, MASK_RESET_CTRL);

}

static void tc358743_reset(struct v4l2_subdev *sd, uint16_t mask)
{
u16 sysctl = i2c_rd16(sd, SYSCTL);

i2c_wr16(sd, SYSCTL, sysctl | mask);
i2c_wr16(sd, SYSCTL, sysctl & ~mask);

}

static inline void tc358743_sleep_mode(struct v4l2_subdev *sd, bool enable)
{
i2c_wr16_and_or(sd, SYSCTL, ~MASK_SLEEP, enable ? MASK_SLEEP : 0);
}

static inline void enable_stream(struct v4l2_subdev *sd, bool enable)
{
struct tc358743_state *state = to_state(sd);

v4l2_info(sd, "%s: %sable\n",	__func__, enable ? "en" : "dis");

if (enable) {
	/* It is critical for CSI receiver to see lane transition
	 * LP11->HS. Set to non-continuous mode to enable clock lane
	 * LP11 state. */
	i2c_wr32(sd, TXOPTIONCNTRL, 0);
	/* Set to continuous mode to trigger LP11->HS transition */
	i2c_wr32(sd, TXOPTIONCNTRL, MASK_CONTCLKMODE);
	/* Unmute video */
	i2c_wr8(sd, VI_MUTE, MASK_AUTO_MUTE);
} else {
	/* Mute video so that all data lanes go to LSP11 state.
	 * No data is output to CSI Tx block. */
	i2c_wr8(sd, VI_MUTE, MASK_AUTO_MUTE | MASK_VI_MUTE);
}

mutex_lock(&state->confctl_mutex);
i2c_wr16_and_or(sd, CONFCTL, ~(MASK_VBUFEN | MASK_ABUFEN),
		enable ? (MASK_VBUFEN | MASK_ABUFEN) :0x0);
mutex_unlock(&state->confctl_mutex);
v4l2_info(sd,"%d:%s: end\n",__LINE__,__FUNCTION__);		
if (enable)		
{		
    /* Display log status for debug purposes		
         * TODO: remove it		
         	
    tc358743_log_status(sd);	
    */		
}

}
static void tc358743_set_pll(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;
u16 pllctl0 = i2c_rd16(sd, PLLCTL0);
u16 pllctl1 = i2c_rd16(sd, PLLCTL1);
u16 pllctl0_new = SET_PLL_PRD(pdata->pll_prd) |
SET_PLL_FBD(pdata->pll_fbd);
u32 hsck = (pdata->refclk_hz / pdata->pll_prd) * pdata->pll_fbd;

v4l2_info(sd, "%s:\n", __func__);

/* Only rewrite when needed (new value or disabled), since rewriting
 * triggers another format change event. */
if ((pllctl0 != pllctl0_new) || ((pllctl1 & MASK_PLL_EN) == 0)) {
	u16 pll_frs;

	if (hsck > 500000000)
		pll_frs =0x0;
	else if (hsck > 250000000)
		pll_frs =0x1;
	else if (hsck > 125000000)
		pll_frs =0x2;
	else
		pll_frs =0x3;
	v4l2_info(sd, "%s: updating PLL clock\n", __func__);
	tc358743_sleep_mode(sd, true);
	i2c_wr16(sd, PLLCTL0, pllctl0_new);
	i2c_wr16_and_or(sd, PLLCTL1,
			~(MASK_PLL_FRS | MASK_RESETB | MASK_PLL_EN),
			(SET_PLL_FRS(pll_frs) | MASK_RESETB |
			 MASK_PLL_EN));
	udelay(10); /* REF_02, Sheet "Source HDMI" */
	i2c_wr16_and_or(sd, PLLCTL1, ~MASK_CKEN, MASK_CKEN);
	tc358743_sleep_mode(sd, false);
}

}

static void tc358743_set_ref_clk(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;
u32 sys_freq;
u32 lockdet_ref;
u16 fh_min;
u16 fh_max;

sys_freq = pdata->refclk_hz / 10000;
i2c_wr8(sd, SYS_FREQ0, sys_freq &0x00ff);
i2c_wr8(sd, SYS_FREQ1, (sys_freq &0xff00) >> 8);

i2c_wr8_and_or(sd, PHY_CTL0, ~MASK_PHY_SYSCLK_IND,
		(pdata->refclk_hz == 42000000) ? MASK_PHY_SYSCLK_IND :0x0);

fh_min = pdata->refclk_hz / 100000;
i2c_wr8(sd, FH_MIN0, fh_min &0x00ff);
i2c_wr8(sd, FH_MIN1, (fh_min &0xff00) >> 8);

fh_max = (fh_min * 66) / 10;
i2c_wr8(sd, FH_MAX0, fh_max &0x00ff);
i2c_wr8(sd, FH_MAX1, (fh_max &0xff00) >> 8);

lockdet_ref = pdata->refclk_hz / 100;
i2c_wr8(sd, LOCKDET_REF0, lockdet_ref &0x0000ff);
i2c_wr8(sd, LOCKDET_REF1, (lockdet_ref &0x00ff00) >> 8);
i2c_wr8(sd, LOCKDET_REF2, (lockdet_ref &0x0f0000) >> 16);

i2c_wr8_and_or(sd, NCO_F0_MOD, ~MASK_NCO_F0_MOD,
		(pdata->refclk_hz == 27000000) ? MASK_NCO_F0_MOD_27MHZ :0x0);

}
static void tc358743_set_csi_color_space(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);

switch (state->mbus_fmt_code) {
	case MEDIA_BUS_FMT_UYVY8_1X16:
		v4l2_info(sd, "%s: YCbCr 422 16-bit\n", __func__);
		i2c_wr8_and_or(sd, VOUT_SET2,
				~(MASK_SEL422 | MASK_VOUT_422FIL_100 | MASK_VOUTCOLORMODE_AUTO) &0xff,
				MASK_SEL422 | MASK_VOUT_422FIL_100 | MASK_VOUTCOLORMODE_AUTO);
		i2c_wr8_and_or(sd, VI_REP, ~MASK_VOUT_COLOR_SEL &0xff,
				MASK_VOUT_COLOR_601_YCBCR_LIMITED);
		mutex_lock(&state->confctl_mutex);
		i2c_wr16_and_or(sd, CONFCTL, ~MASK_YCBCRFMT,
				MASK_YCBCRFMT_422_8_BIT);
		mutex_unlock(&state->confctl_mutex);
		break;
	case MEDIA_BUS_FMT_RGB888_1X24:
		v4l2_info(sd, "%s: RGB 888 24-bit\n", __func__);
		i2c_wr8_and_or(sd, VOUT_SET2,
				~(MASK_SEL422 | MASK_VOUT_422FIL_100) &0xff,
				0x00);
		i2c_wr8_and_or(sd, VI_REP, ~MASK_VOUT_COLOR_SEL &0xff,
				MASK_VOUT_COLOR_RGB_FULL);
		mutex_lock(&state->confctl_mutex);
		i2c_wr16_and_or(sd, CONFCTL, ~MASK_YCBCRFMT, 0);
		mutex_unlock(&state->confctl_mutex);
		break;
	default:
		break;
}
v4l2_info(sd, "%s Set VOUT_SET2=0x%02x,VI_REP=0x%02x\n", __func__,
	i2c_rd8(sd,VOUT_SET2),
	i2c_rd8(sd,VI_REP));

}

static void tc358743_set_csi(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;
unsigned lanes = tc358743_num_csi_lanes_needed(sd);

v4l2_info(sd, "%s:\n", __func__);

tc358743_reset(sd, MASK_CTXRST);

if (lanes < 1)
	i2c_wr32(sd, CLW_CNTRL, MASK_CLW_LANEDISABLE);
if (lanes < 1)
	i2c_wr32(sd, D0W_CNTRL, MASK_D0W_LANEDISABLE);
if (lanes < 2)
	i2c_wr32(sd, D1W_CNTRL, MASK_D1W_LANEDISABLE);
if (lanes < 3)
	i2c_wr32(sd, D2W_CNTRL, MASK_D2W_LANEDISABLE);
if (lanes < 4)
	i2c_wr32(sd, D3W_CNTRL, MASK_D3W_LANEDISABLE);

i2c_wr32(sd, LINEINITCNT, pdata->lineinitcnt);
i2c_wr32(sd, LPTXTIMECNT, pdata->lptxtimecnt);
i2c_wr32(sd, TCLK_HEADERCNT, pdata->tclk_headercnt);
i2c_wr32(sd, TCLK_TRAILCNT, pdata->tclk_trailcnt);
i2c_wr32(sd, THS_HEADERCNT, pdata->ths_headercnt);
i2c_wr32(sd, TWAKEUP, pdata->twakeup);
i2c_wr32(sd, TCLK_POSTCNT, pdata->tclk_postcnt);
i2c_wr32(sd, THS_TRAILCNT, pdata->ths_trailcnt);
i2c_wr32(sd, HSTXVREGCNT, pdata->hstxvregcnt);

i2c_wr32(sd, HSTXVREGEN,
		((lanes > 0) ? MASK_CLM_HSTXVREGEN :0x0) |
		((lanes > 0) ? MASK_D0M_HSTXVREGEN :0x0) |
		((lanes > 1) ? MASK_D1M_HSTXVREGEN :0x0) |
		((lanes > 2) ? MASK_D2M_HSTXVREGEN :0x0) |
		((lanes > 3) ? MASK_D3M_HSTXVREGEN :0x0));

i2c_wr32(sd, TXOPTIONCNTRL, (state->bus.flags &
	 V4L2_MBUS_CSI2_CONTINUOUS_CLOCK) ? MASK_CONTCLKMODE : 0);
i2c_wr32(sd, STARTCNTRL, MASK_START);
i2c_wr32(sd, CSI_START, MASK_STRT);

i2c_wr32(sd, CSI_CONFW, MASK_MODE_SET |
		MASK_ADDRESS_CSI_CONTROL |
		MASK_CSI_MODE |
		MASK_TXHSMD |
		((lanes == 4) ? MASK_NOL_4 :
		 (lanes == 3) ? MASK_NOL_3 :
		 (lanes == 2) ? MASK_NOL_2 : MASK_NOL_1));

i2c_wr32(sd, CSI_CONFW, MASK_MODE_SET |
		MASK_ADDRESS_CSI_ERR_INTENA | MASK_TXBRK | MASK_QUNK |
		MASK_WCER | MASK_INER);

i2c_wr32(sd, CSI_CONFW, MASK_MODE_CLEAR |
		MASK_ADDRESS_CSI_ERR_HALT | MASK_TXBRK | MASK_QUNK);

i2c_wr32(sd, CSI_CONFW, MASK_MODE_SET |
		MASK_ADDRESS_CSI_INT_ENA | MASK_INTER);

}

static void tc358743_set_hdmi_phy(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;

/* Default settings from REF_02, sheet "Source HDMI"
 * and custom settings as platform data */
// turn of physics
i2c_wr8_and_or(sd, PHY_EN, ~MASK_ENABLE_PHY,0x0);
i2c_wr8(sd, PHY_CTL1, SET_PHY_AUTO_RST1_US(1600) |
		SET_FREQ_RANGE_MODE_CYCLES(1));
i2c_wr8_and_or(sd, PHY_CTL2, ~MASK_PHY_AUTO_RSTn,
		(pdata->hdmi_phy_auto_reset_tmds_detected ?
		 MASK_PHY_AUTO_RST2 : 0) |
		(pdata->hdmi_phy_auto_reset_tmds_in_range ?
		 MASK_PHY_AUTO_RST3 : 0) |
		(pdata->hdmi_phy_auto_reset_tmds_valid ?
		 MASK_PHY_AUTO_RST4 : 0));
i2c_wr8(sd, PHY_BIAS,0x40);
i2c_wr8(sd, PHY_CSQ, SET_CSQ_CNT_LEVEL(0x0a));
i2c_wr8(sd, AVM_CTL, 45);
i2c_wr8_and_or(sd, HDMI_DET, ~MASK_HDMI_DET_V,
		pdata->hdmi_detection_delay << 4);

i2c_wr8_and_or(sd, HV_RST, ~(MASK_H_PI_RST | MASK_V_PI_RST),
		(pdata->hdmi_phy_auto_reset_hsync_out_of_range ?
		 MASK_H_PI_RST : 0) |
		(pdata->hdmi_phy_auto_reset_vsync_out_of_range ?
		 MASK_V_PI_RST : 0));
// turn on physics
i2c_wr8_and_or(sd, PHY_EN, ~MASK_ENABLE_PHY, MASK_ENABLE_PHY);

}

static void tc358743_set_hdmi_audio(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);

/* Default settings from REF_02, sheet "Source HDMI" */
i2c_wr8(sd, FORCE_MUTE,0x00);
i2c_wr8(sd, AUTO_CMD0, MASK_AUTO_MUTE7 | MASK_AUTO_MUTE6 |
		MASK_AUTO_MUTE5 | MASK_AUTO_MUTE4 |
		MASK_AUTO_MUTE1 | MASK_AUTO_MUTE0);
i2c_wr8(sd, AUTO_CMD1, MASK_AUTO_MUTE9);
i2c_wr8(sd, AUTO_CMD2, MASK_AUTO_PLAY3 | MASK_AUTO_PLAY2);
i2c_wr8(sd, BUFINIT_START, SET_BUFINIT_START_MS(500));
i2c_wr8(sd, FS_MUTE,0x00);
i2c_wr8(sd, FS_IMODE, MASK_NLPCM_SMODE | MASK_FS_SMODE);
i2c_wr8(sd, ACR_MODE, MASK_CTS_MODE);
i2c_wr8(sd, ACR_MDF0, MASK_ACR_L2MDF_1976_PPM | MASK_ACR_L1MDF_976_PPM);
i2c_wr8(sd, ACR_MDF1, MASK_ACR_L3MDF_3906_PPM);
i2c_wr8(sd, SDO_MODE1, MASK_SDO_FMT_I2S);
i2c_wr8(sd, DIV_MODE, SET_DIV_DLY_MS(100));

mutex_lock(&state->confctl_mutex);
i2c_wr16_and_or(sd, CONFCTL,0xffff, MASK_AUDCHNUM_2 |
		MASK_AUDOUTSEL_I2S | MASK_AUTOINDEX);
mutex_unlock(&state->confctl_mutex);

}

static void tc358743_set_hdmi_info_frame_mode(struct v4l2_subdev sd)
{
/
Default settings from REF_02, sheet “Source HDMI” */
i2c_wr8(sd, PK_INT_MODE, MASK_ISRC2_INT_MODE | MASK_ISRC_INT_MODE |
MASK_ACP_INT_MODE | MASK_VS_INT_MODE |
MASK_SPD_INT_MODE | MASK_MS_INT_MODE |
MASK_AUD_INT_MODE | MASK_AVI_INT_MODE);
i2c_wr8(sd, NO_PKT_LIMIT,0x2c);
i2c_wr8(sd, NO_PKT_CLR,0x53);
i2c_wr8(sd, ERR_PK_LIMIT,0x01);
i2c_wr8(sd, NO_PKT_LIMIT2,0x30);
i2c_wr8(sd, NO_GDB_LIMIT,0x10);
}

static void tc358743_initial_setup(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct tc358743_platform_data *pdata = &state->pdata;

/* CEC and IR are not supported by this driver */
i2c_wr16_and_or(sd, SYSCTL, ~(MASK_CECRST | MASK_IRRST),
		(MASK_CECRST | MASK_IRRST));

tc358743_reset(sd, MASK_CTXRST | MASK_HDMIRST);
tc358743_sleep_mode(sd, false);

i2c_wr16(sd, FIFOCTL, pdata->fifo_level);

tc358743_set_ref_clk(sd);

i2c_wr8_and_or(sd, DDC_CTL, ~MASK_DDC5V_MODE, 
               pdata->ddc5v_delay & MASK_DDC5V_MODE);

i2c_wr8_and_or(sd, EDID_MODE, ~MASK_EDID_MODE, MASK_EDID_MODE_E_DDC);

tc358743_set_hdmi_phy(sd);
tc358743_set_hdmi_hdcp(sd, pdata->enable_hdcp);
tc358743_set_hdmi_audio(sd);
tc358743_set_hdmi_info_frame_mode(sd);

/* All CE and IT formats are detected as RGB full range in DVI mode */
i2c_wr8_and_or(sd, VI_MODE, ~MASK_RGB_DVI, 0);

i2c_wr8_and_or(sd, VOUT_SET2, ~MASK_VOUTCOLORMODE,
		MASK_VOUTCOLORMODE_AUTO);
i2c_wr8(sd, VOUT_SET3, MASK_VOUT_EXTCNT);

}

/* --------------- IRQ --------------- */

static void tc358743_format_change(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);
struct v4l2_dv_timings timings;
const struct v4l2_event tc358743_ev_fmt = {
.type = V4L2_EVENT_SOURCE_CHANGE,
.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};

if (tc358743_get_detected_timings(sd, &timings)) {
	enable_stream(sd, false);

	v4l2_info(sd, "%s: Format changed. No signal\n", __func__);
} else {
	if (!v4l2_match_dv_timings(&state->timings, &timings, 0))
		enable_stream(sd, false);

	v4l2_print_dv_timings(sd->name,
			"tc358743_format_change: Format changed. New format: ",	&timings, false);
}

if (sd->devnode)
	v4l2_subdev_notify_event(sd, &tc358743_ev_fmt);

}

static void tc358743_init_interrupts(struct v4l2_subdev *sd)
{
u16 i;

/* clear interrupt status registers */
for (i = SYS_INT; i <= KEY_INT; i++)
	i2c_wr8(sd, i,0xff);

i2c_wr16(sd, INTSTATUS,0xffff);

}

static void tc358743_enable_interrupts(struct v4l2_subdev *sd, bool cable_connected)
{
v4l2_info(sd, “%s: cable connected = %d\n”, func, cable_connected);

if (cable_connected) {
	i2c_wr8(sd, SYS_INTM, ~(MASK_M_DDC | MASK_M_DVI_DET |
				MASK_M_HDMI_DET) &0xff);
	i2c_wr8(sd, CLK_INTM, ~MASK_M_IN_DE_CHG);
	i2c_wr8(sd, CBIT_INTM, ~(MASK_M_CBIT_FS | MASK_M_AF_LOCK |
				MASK_M_AF_UNLOCK) &0xff);
	i2c_wr8(sd, AUDIO_INTM, ~MASK_M_BUFINIT_END);
	i2c_wr8(sd, MISC_INTM, ~MASK_M_SYNC_CHG);
} else {
	i2c_wr8(sd, SYS_INTM, ~MASK_M_DDC &0xff);
	i2c_wr8(sd, CLK_INTM,0xff);
	i2c_wr8(sd, CBIT_INTM,0xff);
	i2c_wr8(sd, AUDIO_INTM,0xff);
	i2c_wr8(sd, MISC_INTM,0xff);
}

}

static void tc358743_hdmi_audio_int_handler(struct v4l2_subdev *sd, bool *handled)
{
u8 audio_int_mask = i2c_rd8(sd, AUDIO_INTM);
u8 audio_int = i2c_rd8(sd, AUDIO_INT) & ~audio_int_mask;

i2c_wr8(sd, AUDIO_INT, audio_int);

v4l2_info(sd, "%s: AUDIO_INT =0x%02x\n", __func__, audio_int);

tc358743_s_ctrl_audio_sampling_rate(sd);
tc358743_s_ctrl_audio_present(sd);

}

static void tc358743_csi_err_int_handler(struct v4l2_subdev *sd, bool *handled)
{
v4l2_err(sd, “%s: CSI_ERR =0x%x\n”, func, i2c_rd32(sd, CSI_ERR));

i2c_wr32(sd, CSI_INT_CLR, MASK_ICRER);

}

static void tc358743_hdmi_misc_int_handler(struct v4l2_subdev *sd, bool *handled)
{
u8 misc_int_mask = i2c_rd8(sd, MISC_INTM);
u8 misc_int = i2c_rd8(sd, MISC_INT) & ~misc_int_mask;

i2c_wr8(sd, MISC_INT, misc_int);

v4l2_info(sd, "%s: MISC_INT =0x%02x\n", __func__, misc_int);

if (misc_int & MASK_I_SYNC_CHG) {
	/* Reset the HDMI PHY to try to trigger proper lock on the
	 * incoming video format. Erase BKSV to prevent that old keys
	 * are used when a new source is connected. */
	if (no_sync(sd) || no_signal(sd)) {
		tc358743_reset_phy(sd);
		tc358743_erase_bksv(sd);
	}

	tc358743_format_change(sd);

	misc_int &= ~MASK_I_SYNC_CHG;
	if (handled)
		*handled = true;
}

if (misc_int) {
	v4l2_err(sd, "%s: Unhandled MISC_INT interrupts:0x%02x\n",	__func__, misc_int);
}

}

static void tc358743_hdmi_cbit_int_handler(struct v4l2_subdev *sd, bool *handled)
{
u8 cbit_int_mask = i2c_rd8(sd, CBIT_INTM);
u8 cbit_int = i2c_rd8(sd, CBIT_INT) & ~cbit_int_mask;

i2c_wr8(sd, CBIT_INT, cbit_int);

v4l2_info(sd, "%s: CBIT_INT =0x%02x\n", __func__, cbit_int);

if (cbit_int & MASK_I_CBIT_FS) {

	v4l2_info(sd, "%s: Audio sample rate changed\n", __func__);
	tc358743_s_ctrl_audio_sampling_rate(sd);

	cbit_int &= ~MASK_I_CBIT_FS;
	if (handled)
		*handled = true;
}

if (cbit_int & (MASK_I_AF_LOCK | MASK_I_AF_UNLOCK)) {

	v4l2_info(sd, "%s: Audio present changed\n", __func__);
	tc358743_s_ctrl_audio_present(sd);

	cbit_int &= ~(MASK_I_AF_LOCK | MASK_I_AF_UNLOCK);
	if (handled)
		*handled = true;
}

if (cbit_int) {
	v4l2_err(sd, "%s: Unhandled CBIT_INT interrupts:0x%02x\n", __func__, cbit_int);
}

}

static void tc358743_hdmi_clk_int_handler(struct v4l2_subdev *sd, bool *handled)
{
u8 clk_int_mask = i2c_rd8(sd, CLK_INTM);
u8 clk_int = i2c_rd8(sd, CLK_INT) & ~clk_int_mask;

/* Bit 7 and bit 6 are set even when they are masked */
i2c_wr8(sd, CLK_INT, clk_int |0x80 | MASK_I_OUT_H_CHG);

v4l2_info(sd, "%s: CLK_INT =0x%02x\n", __func__, clk_int);

if (clk_int & (MASK_I_IN_DE_CHG)) {

	v4l2_info(sd, "%s: DE size or position has changed\n",
			__func__);

	/* If the source switch to a new resolution with the same pixel
	 * frequency as the existing (e.g. 1080p25 -> 720p50), the
	 * I_SYNC_CHG interrupt is not always triggered, while the
	 * I_IN_DE_CHG interrupt seems to work fine. Format change
	 * notifications are only sent when the signal is stable to
	 * reduce the number of notifications. */
	if (!no_signal(sd) && !no_sync(sd))
		tc358743_format_change(sd);

	clk_int &= ~(MASK_I_IN_DE_CHG);
	if (handled)
		*handled = true;
}

if (clk_int) {
	v4l2_err(sd, "%s: Unhandled CLK_INT interrupts:0x%02x\n", __func__, clk_int);
}

}

static void tc358743_enable_edid(struct v4l2_subdev *sd)
{
struct tc358743_state *state = to_state(sd);

v4l2_info(sd, "%s\n", __func__);
if (state->edid_blocks_written == 0) {
	v4l2_info(sd, "%s: no EDID -> no hotplug\n", __func__);
	return;
}

v4l2_info(sd, "%s:\n", __func__);

/* Enable hotplug after 100 ms. DDC access to EDID is also enabled when
 * hotplug is enabled. See register DDC_CTL */
queue_delayed_work(state->work_queues,
		           &state->delayed_work_enable_hotplug, HZ / 10);

tc358743_enable_interrupts(sd, true);
tc358743_s_ctrl_detect_tx_5v(sd);

}
static void tc358743_hdmi_sys_int_handler(struct v4l2_subdev *sd, bool *handled)
{
struct tc358743_state *state = to_state(sd);
u8 sys_int_mask = i2c_rd8(sd, SYS_INTM);
u8 sys_int = i2c_rd8(sd, SYS_INT) & ~sys_int_mask;

i2c_wr8(sd, SYS_INT, sys_int);

v4l2_info(sd, "%s: SYS_INT =0x%02x\n", __func__, sys_int);

if (sys_int & MASK_I_DDC) {
	bool tx_5v = tx_5v_power_present(sd);

	v4l2_info(sd, "%s: Tx 5V power present: %s\n",	__func__, tx_5v ?  "yes" : "no");

	if (tx_5v) {
		tc358743_enable_edid(sd);
	} else {
		tc358743_enable_interrupts(sd, false);
		tc358743_disable_edid(sd);
		memset(&state->timings, 0, sizeof(state->timings));
		tc358743_erase_bksv(sd);
		tc358743_update_controls(sd);
	}

	sys_int &= ~MASK_I_DDC;
	if (handled)
		*handled = true;
}

if (sys_int & MASK_I_DVI) {
	v4l2_info(sd, "%s: HDMI->DVI change detected\n", __func__);

	/* Reset the HDMI PHY to try to trigger proper lock on the
	 * incoming video format. Erase BKSV to prevent that old keys
	 * are used when a new source is connected. */
	if (no_sync(sd) || no_signal(sd)) {
		tc358743_reset_phy(sd);
		tc358743_erase_bksv(sd);
	}

	sys_int &= ~MASK_I_DVI;
	if (handled)
		*handled = true;
}

if (sys_int & MASK_I_HDMI) {
	v4l2_info(sd, "%s: DVI->HDMI change detected\n", __func__);

	/* Register is reset in DVI mode (REF_01, c. 6.6.41) */
	i2c_wr8(sd, ANA_CTL, MASK_APPL_PCSX_NORMAL | MASK_ANALOG_ON);

	sys_int &= ~MASK_I_HDMI;
	if (handled)
		*handled = true;
}

if (sys_int) {
	v4l2_err(sd, "%s: Unhandled SYS_INT interrupts:0x%02x\n", __func__, sys_int);
}

}

#ifdef CONFIG_VIDEO_ADV_DEBUG
static void tc358743_print_register_map(struct v4l2_subdev *sd)
{
v4l2_info(sd, “0x0000–0x00FF: Global Control Register\n”);
v4l2_info(sd, “0x0100–0x01FF: CSI2-TX PHY Register\n”);
v4l2_info(sd, “0x0200–0x03FF: CSI2-TX PPI Register\n”);
v4l2_info(sd, “0x0400–0x05FF: Reserved\n”);
v4l2_info(sd, “0x0600–0x06FF: CEC Register\n”);
v4l2_info(sd, “0x0700–0x84FF: Reserved\n”);
v4l2_info(sd, “0x8500–0x85FF: HDMIRX System Control Register\n”);
v4l2_info(sd, “0x8600–0x86FF: HDMIRX Audio Control Register\n”);
v4l2_info(sd, “0x8700–0x87FF: HDMIRX InfoFrame packet data Register\n”);
v4l2_info(sd, “0x8800–0x88FF: HDMIRX HDCP Port Register\n”);
v4l2_info(sd, “0x8900–0x89FF: HDMIRX Video Output Port & 3D Register\n”);
v4l2_info(sd, “0x8A00–0x8BFF: Reserved\n”);
v4l2_info(sd, “0x8C00–0x8FFF: HDMIRX EDID-RAM (1024bytes)\n”);
v4l2_info(sd, “0x9000–0x90FF: HDMIRX GBD Extraction Control\n”);
v4l2_info(sd, “0x9100–0x92FF: HDMIRX GBD RAM read\n”);
v4l2_info(sd, “0x9300- : Reserved\n”);
}

static int tc358743_get_reg_size(u16 address)
{
/* REF_01 p. 66-72 */
if (address <=0x00ff)
return 2;
else if ((address >=0x0100) && (address <=0x06FF))
return 4;
else if ((address >=0x0700) && (address <=0x84ff))
return 2;
else
return 1;
}

static int tc358743_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
if (reg->reg >0xffff) {
tc358743_print_register_map(sd);
return -EINVAL;
}

reg->size = tc358743_get_reg_size(reg->reg);

i2c_rd(sd, reg->reg, (u8 *)&reg->val, reg->size);

return 0;

}

static int tc358743_s_register(struct v4l2_subdev *sd,
const struct v4l2_dbg_register *reg)
{
if (reg->reg >0xffff) {
tc358743_print_register_map(sd);
return -EINVAL;
}

/* It should not be possible for the user to enable HDCP with a simple
 * v4l2-dbg command.
 *
 * DO NOT REMOVE THIS unless all other issues with HDCP have been
 * resolved.
 */
if (reg->reg == HDCP_MODE ||
    reg->reg == HDCP_REG1 ||
    reg->reg == HDCP_REG2 ||
    reg->reg == HDCP_REG3 ||
    reg->reg == BCAPS)
	return 0;

i2c_wr(sd, (u16)reg->reg, (u8 *)&reg->val,
	   tc358743_get_reg_size(reg->reg));

return 0;

}
#endif

static int tc358743_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
{
u16 intstatus = i2c_rd16(sd, INTSTATUS);

v4l2_info(sd, "%s: IntStatus =0x%04x\n", __func__, intstatus);

if (intstatus & MASK_HDMI_INT) {
	u8 hdmi_int0 = i2c_rd8(sd, HDMI_INT0);
	u8 hdmi_int1 = i2c_rd8(sd, HDMI_INT1);

	if (hdmi_int0 & MASK_I_MISC)
		tc358743_hdmi_misc_int_handler(sd, handled);
	if (hdmi_int1 & MASK_I_CBIT)
		tc358743_hdmi_cbit_int_handler(sd, handled);
	if (hdmi_int1 & MASK_I_CLK)
		tc358743_hdmi_clk_int_handler(sd, handled);
	if (hdmi_int1 & MASK_I_SYS)
		tc358743_hdmi_sys_int_handler(sd, handled);
	if (hdmi_int1 & MASK_I_AUD)
		tc358743_hdmi_audio_int_handler(sd, handled);

	i2c_wr16(sd, INTSTATUS, MASK_HDMI_INT);
	intstatus &= ~MASK_HDMI_INT;
}

if (intstatus & MASK_CSI_INT) {
	u32 csi_int = i2c_rd32(sd, CSI_INT);

	if (csi_int & MASK_INTER)
		tc358743_csi_err_int_handler(sd, handled);

	i2c_wr16(sd, INTSTATUS, MASK_CSI_INT);
	intstatus &= ~MASK_CSI_INT;
}

intstatus = i2c_rd16(sd, INTSTATUS);
if (intstatus) {
	v4l2_info(sd,
			"%s: Unhandled IntStatus interrupts:0x%02x\n",
			__func__, intstatus);
}

return 0;

}

static irqreturn_t tc358743_irq_handler(int irq, void *dev_id)
{
struct tc358743_state *state = dev_id;
bool handled = false;

tc358743_isr(&state->sd, 0, &handled);

return handled ? IRQ_HANDLED : IRQ_NONE;

}

static int tc358743_subscribe_event(struct v4l2_subdev *sd,
struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_SOURCE_CHANGE:
return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
case V4L2_EVENT_CTRL:
return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
default:
return -EINVAL;
}
}

/* --------------- VIDEO OPS --------------- */

static int tc358743_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
*status = 0;
*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
*status |= no_sync(sd) ? V4L2_IN_ST_NO_SYNC : 0;

v4l2_info(sd, "%s: status =0x%x\n", __func__, *status);

return 0;

}
static int tc358743_s_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct tc358743_state *state = to_state(sd);
v4l2_info(sd, “%s\n”,func);
if (!timings)
return -EINVAL;

if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
	v4l2_info(sd, "%s: no change\n", __func__);
	return 0;
}

if (!v4l2_valid_dv_timings(timings,	&tc358743_timings_cap, NULL, NULL)) {
	v4l2_err(sd, "%s: timings out of range\n", __func__);
	return -ERANGE;
}

state->timings = *timings;

enable_stream(sd, false);
tc358743_set_pll(sd);
tc358743_set_csi(sd);

return 0;

}

static int tc358743_g_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct tc358743_state *state = to_state(sd);

*timings = state->timings;

return 0;

}

static int tc358743_enum_dv_timings(struct v4l2_subdev *sd,
struct v4l2_enum_dv_timings *timings)
{
if (timings->pad != 0)
return -EINVAL;

return v4l2_enum_dv_timings_cap(timings, &tc358743_timings_cap, NULL, NULL);

}

static int tc358743_query_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
int ret;

ret = tc358743_get_detected_timings(sd, timings);
if (ret) {
	v4l2_err(sd, "%s: @@@@@ timings detected error\n", __func__);
	return ret;
}

if (debug)
	v4l2_print_dv_timings(sd->name, "tc358743_query_dv_timings: ",
			timings, false);

if (!v4l2_valid_dv_timings(timings,
			&tc358743_timings_cap, NULL, NULL)) {
	v4l2_err(sd, "%s: @@@@@ timings out of range\n", __func__);
	return -ERANGE;
}

return 0;

}

static int tc358743_dv_timings_cap(struct v4l2_subdev *sd,
struct v4l2_dv_timings_cap *cap)
{
if (cap->pad != 0)
return -EINVAL;

*cap = tc358743_timings_cap;

return 0;

}

static int tc358743_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
cfg->type = V4L2_MBUS_CSI2;

/* Support for non-continuous CSI-2 clock is missing in the driver */
cfg->flags = V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;

switch (tc358743_num_csi_lanes_in_use(sd)) {
case 1:
	cfg->flags |= V4L2_MBUS_CSI2_1_LANE;
	break;
case 2:
	cfg->flags |= V4L2_MBUS_CSI2_2_LANE;
	break;
case 3:
	cfg->flags |= V4L2_MBUS_CSI2_3_LANE;
	break;
case 4:
	cfg->flags |= V4L2_MBUS_CSI2_4_LANE;
	break;
default:
	return -EINVAL;
}

return 0;

}
static int tc358743_s_stream(struct v4l2_subdev sd, int enable)
{
/
FIXME: show log status for test */
/*hainh
enable_stream(sd, enable);
if (enable)
tc358743_log_status(sd);
*/
enable_stream(sd, true);
if (true)
tc358743_log_status(sd);

return 0;

}

/* --------------- PAD OPS --------------- */

static int tc358743_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *format)
{
struct tc358743_state *state = to_state(sd);
u8 vi_rep = i2c_rd8(sd, VI_REP);

if (format->pad != 0)
	return -EINVAL;

format->format.code = state->mbus_fmt_code;
format->format.width = state->timings.bt.width;
format->format.height = state->timings.bt.height;
format->format.field = V4L2_FIELD_NONE;

switch (vi_rep & MASK_VOUT_COLOR_SEL) {
case MASK_VOUT_COLOR_RGB_FULL:
case MASK_VOUT_COLOR_RGB_LIMITED:
	format->format.colorspace = V4L2_COLORSPACE_SRGB;
	break;
case MASK_VOUT_COLOR_601_YCBCR_LIMITED:
case MASK_VOUT_COLOR_601_YCBCR_FULL:
	format->format.colorspace = V4L2_COLORSPACE_SMPTE170M;
	break;
case MASK_VOUT_COLOR_709_YCBCR_FULL:
case MASK_VOUT_COLOR_709_YCBCR_LIMITED:
	format->format.colorspace = V4L2_COLORSPACE_REC709;
	break;
default:
	format->format.colorspace = 0;
    v4l2_info(sd,"%d:%s colorspace = 0\n",__LINE__,__FUNCTION__);
	break;
}

return 0;

}

static int tc358743_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_fh *fh,
struct v4l2_subdev_format *format)
{
struct tc358743_state *state = to_state(sd);
u32 code = format->format.code;
int ret = tc358743_get_fmt(sd, fh, format);

format->format.code = code;

if (ret)
	return ret;

switch (code) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_UYVY8_1X16:
		break;
	default:
		return -EINVAL;
}

if (format->which == V4L2_SUBDEV_FORMAT_TRY)
	return 0;

state->mbus_fmt_code = format->format.code;

enable_stream(sd, false);
tc358743_set_pll(sd);
tc358743_set_csi(sd);
tc358743_set_csi_color_space(sd);

return 0;

}
static int tc358743_g_edid(struct v4l2_subdev *sd,
struct v4l2_subdev_edid *edid)
{
struct tc358743_state *state = to_state(sd);
int i=0;

if (edid->pad != 0)
	return -EINVAL;

if (edid->start_block == 0 && edid->blocks == 0) {
	edid->blocks = state->edid_blocks_written;
	return 0;
}

if (state->edid_blocks_written == 0)
	return -ENODATA;

if (edid->start_block >= state->edid_blocks_written || edid->blocks == 0)
	return -EINVAL;

if (edid->start_block + edid->blocks > state->edid_blocks_written)
	edid->blocks = state->edid_blocks_written - edid->start_block;

i2c_rd(sd, EDID_RAM + (edid->start_block * EDID_BLOCK_SIZE), edid->edid,
		edid->blocks * EDID_BLOCK_SIZE);
v4l2_info(sd,"EDID_RAM has %d byte from: 0x%04x to 0x%04x \r\n",
	edid->blocks * EDID_BLOCK_SIZE,
	EDID_RAM + (edid->start_block * EDID_BLOCK_SIZE),
	EDID_RAM + (edid->start_block * EDID_BLOCK_SIZE) + 
	edid->blocks * EDID_BLOCK_SIZE);
for(i=0;i<edid->blocks * EDID_BLOCK_SIZE;i++){
	printk("%02x ",edid->edid[i]);
}
v4l2_info(sd,"\r\n");
return 0;

}

static int tc358743_s_edid(struct v4l2_subdev *sd,
struct v4l2_subdev_ed